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Abstract: This paper generalizes the equations of motion for a single rigid body, published in a previous work, for the case
of a system containing an arbitrary number of rigid bodies. It is not important the way in which the rigid bodies are linked
one to another. We also present an application to highlight the theory.
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1. INTRODUCTION

The study of the multibody systems is a great task of nowadays researchers. The general case of the rigid body
with arbitrary constraints is published in [1]. In this paper we will generalize the equation of motion published
there for the case of a mechanical system with an arbitrary number of rigid bodies linked one to another.

The matrix equation of motion may be obtained in two ways. The first approach is to use the general theorems
(the theorem of momentum and the theorem of moment of momentum). In this approach we make the following
notations

[ W R
Mel=| opistar [Q]T[Jo][Q]] .

HIE;}}} {Eq}=H§;ﬂ £} = -[alsT[o]+ [AsT @l

Fo} = eI o o]+ eI fwlso [, e
and the matrix equation of motion takes the form
[M q]{q} = {Fq}+ {Eq} 2
where
[A]=[wlelol. |a,l=[u,JAL [A)]=[wIu.JoT[A]. |A,]=[Alu,]. [A]=vla,]+ola,]+ ola,].
v 0 -—mz my
o] = (AT ], oo] = [oT fu, )} fuo} fu )] [Q1= T Ioo). =[] 6. [8]=| mee 0 —mx|,
¢ —Myc MXc 0
(@] = ~alu, JoI o, } [, JoT tus} {0} el T (o], } f0} f01. ©

If we use the Lagrange equations, then we denote by ¢, and F, , k = 1,n, the generalized coordinates, and
forces, respectively, and the Lagrange equations read
i(aaj—%ﬂq Jk=1n, @
dt{ oG ) 0o “
where E. isthekinetic energy, and the generalized forces contain both the given and the constraint forces.
Using the matrix notations

T T
dE.| _ | 0E. 0 ok dE.| _ | 0E. 0 ok _
{ -c}:|: — _Ec .c:| ,{_c}:|: c _EC C:| ’{Fq}:[FCIl qu Fqn]T, (5)
oq 0 04 G, aq o 00, G,

one obtains the matrix form of the Lagrange equations
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Denoting

s} = [Xo Yo Zon B} = [\V 0 (PIF’ laf = [Xo Yo Zo v 6 (P]T' (7)
the kinetic energy reads

-l oJe) ®

wherefrom we get

] g {2 } g{w Yol a[gf;hq}} ©
and the equation (4) becomes

M Jii} + [ i} - = 1R, ) (10)
Denoting

{Eq} =g Jo + {%?}- (12)
it results

[Mq]{q}: {Fq}+{Eq}' (12)

2. THE MATRIX EQUATION OF MOTION FOR A RIGID BODY WITH CONSTRAINTS

One may prove [1] that the equations (2) and (12) are equivalent, that is, the matrices {Eq } {Eq} are one and
the same. In this way, the generalized and the constraint forces can be replace by the sum between the matrix
{F, } of the generalized given forces and the matrix [B]' {A}, where [B] is the matrix of constraints, and {A} is
the matrix of the Lagrange multipliers. It results the differential equation of motion
{[m]—[sr}{{ }} {{ FoJ+ }} (13)
[B] [o] €} Bl

where

[Blal = {c} (19

is the equation of the constraints, and

s =[Xo Yo Zo]'. Bi=lw oo, {aj=[Xo Yo Zo v 0 o[,

wio| I AlsTel]
I SIAT T Bole]

<[ B B~ Jasrlels RlsTielp). - -forbofel T bbelelll.  wo

The matrix of constraints [B] has the general form

By B .. By

[B] BZl BZZ BZG : (15)

By Bpz - Bpe

hence, the generahzed force that corresponds to the constraint of index i will have the components
By B
Fll)=2 {32} Y} = x{as} (16)
B B
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in which A;B;;, A;B;, and A;B,; represent the projections of the force of constraint onto the axes of the fixed
reference frame, while the projections of the moments about the point O, onto the mobile axes are obtained

from the expression [[Q]‘l]T {Fg

4

3. THE MOVING EQUATION FOR A SYSTEM OF RIGID BODIES

The moving equation (13) may be easily generalized for the case of n rigid bodies with constraints. We make
the following modifications:
— the matrix of constraints [B] reads

oty o
Ko, o, = Xg
ofy i o
No, Mo, Mo,
ofy of; ofp
0Zo, 0Zo, 0Zo,
oo
oy oy, oy,
ofy o o
o a0
oo T
ey =) T T
ofy o o
Xo, Xo, Xo,
ofy oy oy
Mo, Mo, No,
ofy of; fp
0Zon 0Zon, 0Zon
ofy of; p
W W W
ofy o, oAp |, (17)
09, 9, 09,
oy AT
| O oy, o9, |
inwhich f,(q) =0, i =1, p, arethe constraints;
— the matrix [M ] hasthe expression
[m,] [o] [o] - [o] ]
0] [M,] [o] - [o]
M]=| [o] [o] [Mj]-- o] |, (18)
L[o] [o] [o] - [Mm,]]
where
[m] [AIscT Q]
M=o s IaT [ri[aok[[Qk]] a9
O, being the origin of the mobile reference system linked to therigid body k, k = 1Ln;
— the matrices {s} and {B} take the form
{S} = [Xol Yol Zol Xon Yon Zonrv {B} = [\Vl 0 91 - vy 0, (Pn]Tv (20)
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that is,

8= [s) s )T 8= e B - BT (21)

— the vector {q} writesas

=ls) B 6 )] @)
and it has 6n components;
— the vector {Eq} becomes

~ ~ T = T ~ 7= v

Ri-|RS &S BT RT) 23
where {Esk } and {IEBk } k = 1,n, have the same known expressions,
Let usremark that if thereis no link between the rigid bodies, then the matrix of constraints takes the form

ESCEG

od,
B]-| L) [%} SN (22
d [ ﬁﬁ[iﬂ

where f, = [f fp, - fpk]rare the constraints of the rigid solid k, k = 1,n, each constraint of this kind

P
containing only the parameters {qk} . Inthisway, one obtains n independent equations of type (13).

4. EXAMPLE

We consider two bars AC, and CB of lengths 1;, and I,, masses m;, and m,, respectively, linked one to
another by a spherical joint at the point C. The mobile reference systems O, xy,z, O,X,Y,2, are principal
central system of inertia for which one knows the values J, , J J,, - For the fixed reference

NI N

X2 1

Y1’ y2!
system Oy XYZ theaxis OyZ is vertical ascendant.

Choosing asrotational parameters the Bryan angles for each body, we have

ZK
Y;
OO
X
Figurel: Example
1 O 0 cosO; 0 sin6; cosg; —sing; 0
[wi]: 0 cosy; —siny; ’[ei]: 0 1 0 v[(Pi]: sing; cosg; O, (25)
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co;co; — CO; s 0;

[A]=[wi]6i Joi] = | swistico; + cwisp; — syisHsp; + cyico — Syich; |, (26)
Cy;S0;Cp; + Sy;Sp;  Cy;SH;Sp; + SyiCo;  Cyich;
000 00O 001 0-10
[s]=|000|, [u,]=loo-1],[u,]=| 0 00|, [u,]=|2 0 of, 27)
000 010 -100 00O
0O O 0 —sin®; 0 cosé;
[lp P ] = [Uwi Iq"i] =|0 —siny; cosy; |, [epi ] = [Uei Iei] = 0 0 ©
0 cosy; —sSiny, cos6; 0 —sno,
—sng, —coso, 0
[(ppi] = [U(pi I(Pi] =| cosg; —sing, Of, (28)
0 0 0
0 0 0

[y, )= [wp,J6iTo] = | cwistico — syise, — cwistiser — syicp; - cyics |,
Sy 90;C; + Cy;iSp; — Sy 90;Sp; + Cy;Co; — Sy;Ch;

[ —sBiop; 0;sp; ch;
[Aei]:[wi][epil(pi]: Syicoicp;  — sy;CH;sp;  Sy;sH;

|~ CoiCOiCp;  Sy;cHisp; — Cy;sh;

— C0;Sp; — 0;Co; 0
[Aq>i]= [qu][ei][@pi]: — Sy;S0;Sp; + Cyicp; — Sy;sHicp; — Cyisp; O, (29)
| CyiS0;sp; +syiCp;  Cy;sHice; —syisp; 0
1 0 0
A=A, J+olag [+ alag ] o, b= |0 ug = | 1] b, b= 0], (30)
0 0 1
cosg; cosO; sing; O —sing; cos®; cosg; O
[Q/]= [(piIr[[ei]T{uwi}{uei}{ugDi }]= —sing, cosh, cosg; 0, [Q(pi]= — cos; cosh, —sing, 0,
sno, 0 1 0 0 0
—cosg; sing; 00
[Qy]=| sing sine, 00, (31)
cos 6, 00
— ¢, Sing; cos6; — O, cosg; SNB;, ¢; cosp, O
[Q.] = ¢; [Q(pi ]+ é[Qei ] =| - ¢; COSQ, Cqsei +0;sing; sind; — ¢;sing; 0], (32
6; coso; 0 0
Vi s, CoS@, cosO; + 0, sing,
w}=[Q]6 | =|-vsing cose; + 6, cosg, |, (33)
o, -y Sind; — ¢,
i 0 —ysing, — ¢, —ysing; cos6; + 6, cosg,
Jooi] = ysing; + G o ~; 0S¢, cos0; — ; sng; |, (39)
 Sin @; cos6; — 0; cosg; \y; coS; CoSH; + 6; Sin @ 0
'm 0 0 Jy 0 0
m]=|omol| fig]=| 09, o (35)
0 0m 003,
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000 000

[AlsTlQ]=|000| [QT[s]A] =|o00|, (36)
000 000
[Qi]T[‘]Oi IQl]T =
—in Co;ch; (‘biS(PiCGi —éiC(Pisei)— J
— Jy, Sp;cH; (— (iC;00; + 6;50;0, )* J;,$0,c0;0;
Jy S0; ((PiS(Picei - éiC(Pisei)"' ) . ' (37)
= ) . Jy, SPiCO; p; — —Jy, SP; CP; P,
+Jy, Co; (— ®;Co;CH; + eiS(Pisei)
J,,C0;6; 0 0

% C2;C0; ¢y + -Jy, s%p;c;¢; O

o

[Qi] o, ][Joi IQi] =

- Jy Co;CH; ((\biS(Picei + éiC(Pisei)—

— Jy, Sp;Ch; (— PiCo;Cco; + éiS(Pisei >+
+ J,99,¢0,0;

3, C2;00; (;0; + ;) —
= _inSZ(Picei(_ Vs - ¢;) -

— 3z, 90,0,

Jy C(Picei(\i/isq)icei - éiC(Pi)— Jy; S0; (\i/iapicei - éi(xpi)+

— Jy, Seich; (‘i’iC‘Picei + éiS‘Pi) Jy, Co; (\i/iC(PiCOi + éiSlPi>

— Jy; S0; ((biS(Picei + 6;C0;90; )+ .
' . . J,,¢0;6;
+ Jy, Co; (— $;Cp;CO; + 6iS*PiSQi)
inS‘PiC(Pi(\i/isei + ;) - Sl (38)
_ : ~ 3,0, |.
—in&PiC(Pi(\l’isei + ;) '

We denote by B(J‘), j = 1,3,i=12,the components of the vector
B! g
Fol= |60 = T solel+ [T fwlsoIa]] o | (@)
§ o
We also have
Jx C?0;C?0; + 3, 8%¢;C%0; + J,5%0; J, Sp;Cp;C0; — J Sp;0p;H; J,5%6;
QTP Jal=] 3. s0icec; - I, s0c0,H, 3,82, + 3, c%, 0 (40)
J, 9, 0 J,
and let us denote by Y(ji,z ), k= 13,i= 1,2, the components of these matrices.
We will consider the order of parameters Xo , Yo,, Zo,» W1, 01, 91, Xo,, Yo, Zo,s W2, 02, ¢2.

We have only one constraints given by the belonging of the point C to the two bars. For the bar AC we may
write Xz =1,/2, yo =0, z- =0, while for the bar BC we have x. = -1,/2, y. =0, z. = 0. From the
relations

I

Iy
Xc Xo, o Xc Xo, )
Yo |=| Yo, [+[A] O], | Yo |=| Yo, [+[A] O (41)
Zc Zo, 0| |z Zo, 0

it results the expressions
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| I
Xo, + Elcosel cos@; = Xo, — Ezcose2 cos¢,,
I /. . . PY . .
Yo, + El(sm 1SN0, Cosg, + cosy, Singy) = Yo, —Ez(sm Y, SN0, COSQ, + COSY, SiN@,),

Zo, + %(— CoSy; SN0, COSQ; + SNy, SiNgy) = Zg, — IEZ(— CoSy, SN0, COSQ, + Siny,siNg,)  (42)
and the constraint function read

I |
f1(Xo, s 02) = Xo, = Xo, + —=C0S6; COS@; + -2 C0SH, COS@, = 0,
1( o (Pz) o 0T 1 ?1 2 2 P2

ly /. . .
fZ(XOl,...,(pz) =Yo, ~ Yo, + El(sm Y, SN0, oS, + cosy, Sing, ) +

I, /. . .

+32(smwzsm 0, CoS@, + CoSy, Sing,) = 0,

Il . . .
f3(xol,...,q>2) =Zo —Zo, + E(_ cosy, Sin0,; cosg, + siny, sing, ) +

I (43)
+ 52(— COSV/, SiNB, COSQ, + COSY, SiNg,) = 0.

The components of the matrix of constraints are

of of of of of I .
Bll: axl :ll B_|_2 = aYl :0, Bl3: azl ZO, BJA 26—1:0’ &5:—1:—isnelCOSQl,
o o o V1 0, 2
of | . of of of of
Bg = — =-2c0s0,sing;, By =—4—=-1,Bg=—21-=0, Bg=—2-=0, Byg=—2=0,
00, 2 T X, Mo, 0Zo, oy,
=—1 =_-24n60,coso,, = —= =—--200s0, 8n 44
By 20, > 2 92, Bip 50, > 239N Q3 (44)
of of of of I . . .
lezax_zzo, BZZZ&YZ =1, B23:62—2:0: Bz4=a_2=51(COSW15'n91—Sm\V15m(P1)v
o O 0 W1
of I, . of I . . .
e = ﬁ _ Elsm 1 COS0; COSQ,, By = 5 = El(_ siny, sin®, sin g, + cosy; cosg, ),
1 1
527:%20, BZBZ;fY_ZZ_L Bzgza‘;l:o,
02 02 02
afz |2 . . . afz |2 .
Byg = —2 = -2 (cosy, sin0, cosg, — Siny, Sing,), By, = —% = -2siny, cos0, COSQ,,
oy, 2 0, 2
of | . . .
By, = ﬁ = 52(— siny, sin0, sin @, + cosy, COS Y, ), (45)
2
of of of
lezax—s:o’ B32=ﬁ=0' 833282_321'
O O O
= —2 = L(siny,sin 6, cose, + cosy, Sing,), By = —2 = —-X cosy, cosh, cos o, ,
oy, 2 00, 2
oy I, o . ot ot
= —= = =(cosy;Sin6; sinp; + SNy, Cos¢;, ), =——=0, =——=0,
Bss 20, 2( V1 1 SN ¢y V1 <P1) By Xoy Bss No,
B, s B, —ﬁ—l—z(sin Sin 0, COSQ, + COSY, SiN@,)
9 = oz, =—4L 10 = oy, ) VY2 2 ) Y239h ey ),
2
of I of I . . .
By = f = —Ezcosw2 cos0, Cos¢, , By, = ﬁ = Ez(cosxy2 SinB,sing, + SNy, cosg,).  (46)
2 2

We may also write
{Fsl}:[oo_mlg]-r’ {F52}=[00—ng]T, {FBl}:[OOO]T’ {FBZ}:[OOOP, {Esl}=[000]T,

Fl=loodl, F. =Y s p2T, |- B2 82 2T, (47)
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{af}
’

. . T
) Bﬂ 512 %12 BisO; + Bisds + Biiyy + Briod,
{B}: B, By, - By, [B Q}: B24\i11"f B25.91Jr Bze¢1+ Bzm‘i’z*‘ 3211§2+ lez(bz ,
B31 Bsz lez By + BasBy + Bagy + BaioWi + By, + Byroh,
Q}: [Xol Yo, Zo, V1 01 01 Xo, Yo, Zo, W2 0> (Pz]T’ {7\}: [7»1 Ao 7b2]T- (48)
We denote by [M ] the fifteenth order squared matrix
m 0 0 00O OO OO O O O -By —-By —By|
OmO0 0 O0 0 OO O 0 O 0 -B, -B,, —By,
0 0m O OO0 0 0 O 0 0O 0 —-Bs —By —By
0 0 OY%)Y%)Y%?O 0 0 0 0 0 -By —By —-By
0 0 0 Y(zle(zlz)Y(zlg 0 00 0 0 0 -Bs —Bys —By
00 0/ 00 0 0 0 0 -Bg -By -By
0 00 00O Om OGO 0 O O -B, —By —By
[M]=|0 0 0 0 0O OmM O O O O -Bg —Byg —Byg (49)
0 0000 0O O Om 0 O 0 -Bg —Byg —By
000000 O0 0 0242 v%) ~ Buo — Boo — Bayg
0000 0O 0 O0 0 2% (2 ~ B — By — By
0000000 0 0 v2 2 2 -By, By, — By
By By B By Bis By By Big B Byg By B, 0 0 0
Bo1 By By By Bys By By Byg Byg Byyg Byyy Byy O 0 0
By By, By By By By By By By Byyg By Byy 0 O 0|
and it results the equation of motion
W {{ }} {{F} +F, }} 50
- [Bla)
Thereaction at the point C has the components
Bll _}\‘1 BZZI._ 0 B31 0_
M B =0, A By |=|hy|, A3 By |=| 0 (51)
Bs] |O B ] 0 By =
or, equivalently,
Bl7_ _7‘1 _BZ7 0 837— 0
MiBg|=| 0 |, Ay Byg|=|-2z|, A3 Bgg|=| O (52)
Bio | 0 | Bao 0 Bo| [-%s3

[00-mgo00000-mgo000,

0 0O O 0 O
mo O 0 O
Om 0 0 O
0 0y} )
0 0 vy 44)
ooY‘ei%v%i%
0 b

Fol+ Bl =00 - mg sl p2 g% 00 - myg p2 p2 p2]

F.j=lbo-mgooof, [F.,}=l0o-mg, 000,

Rl =000 B2 p® p2],
F.)=looop? pd p® 0002 g g2,
ci=lbodl, fej=loodl,

verifying the principle of action and reaction.
On the other hand,

260



CoS@®; Sin@; CoSH; — Cosy; SN 6,

[[Q ]’1]r -1 | gn @; COSQ, COSO;, sing, sin®; |, (53)
cos 6
0 0 cos6;
Bis 0
{Félgl}: M| Bs | = —xlgl sin, coso, |,
B cos0; sing,
Boa CoSy, SinB; cose; — SNy, SiN @,
{F&ZZ}: Aol By | = 7»251 Siny, cos@,; cos@, :
Bog —siny,; Sin6; Sin @; + COSy; COS
B, | Siny; Sin ©; cose; + Cosy; Sin @,
{Fgg3}= Mg Byg | = Ay = — COS, COSO, COS@, (54)
By COSy; SiNB; Sin@; + Siny; COS @,

and it results the projections of the components of the moment of the reaction that acts upon the first body at the
point C, onto the axes of the system O;x, v,z
. | E,; cos@, + Ey; SN, C0S6; — E5; COS@, SINO;
-1 1 1 1 . . .
M Ej; cos6;

where

E;; = A,(cosy, Sin6; cosg, — siny, sin @) + A5(siny, sin @, cosg, + cosy, sing;,),

E,; = —A; SN0, COSQ; + A, SNy, COSH; COSQ; — A5 COSy; COSH; COSO;,

Es = —Ay C0OSO, SiN @, + A,(— Siny,; Sin©; sin @, + COSy,; COS@;) +

Al

. _ ) (56)
+ L3(cosy; sin©; Sin g, + siny, cosg; ).
We also have
Biso | 0
FQ =By | - ~hy 2| - sin6, cosp, |,
Biis cos0, sin @,
Bo1o COSy, Sin B, COS®, — SiNy, SiN @,
{Fé%)z}z Ayl Boyy | = le_; sin y, cos0, cos ¢, ,
B,1o —siny, SN0, sin @, + COSy, COS @,
B0 Siny, sin B, CoS@, + COSy, SiN @,
{,:((3%)3}: g By | = 7»3%2 — CcoS s, COS 0, CoS @, (57)

Bs1o Cosy, SinB, sSin @, + Siny, COS®,
and it results the projections of the components of the moment of the reaction that acts upon the second body at
the point C, onto the axes of the system O,X,Y,z,

M,, | E;, coso, + E,, sin g, cos6, — E;, cOse, Sin6,
1 . . .
My, |= [[Qz] ]r{{FgB)l}+ {Fé%)z }+ {Fgﬁ)g }} = EZ — Ej, Sing, + E,, c0sg, c0s0, + E5, Sing, sinod,
M, E;, cosO,
(58)
where
Ei, = Ay(cosy, sin®, cosg, —siny, sin6,) + Az(siny, sinB, cose, + cosy, sing,),
E, = -1, SN0, oS, + A, Siny, COSO, COSQ, — A5 COSY, COSO, COSY,,
Es, = Ay(—Siny,sin0,sing, + cosy, cosg, ) + (59)

— 1, €080, Sin @, + A5(coSy, SiNB, SN g, + SNy, COSQ,).
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3. CONCLUSION

In this paper we presented the generalization of the equation of motion for a mechanical system of an arbitrary
number of rigid bodies. The reader may easily observe the procedure which extends the matrix of inertia, the
matrix of constraints, and the matrix of generalized forces. The absence of the link between two bodies leadsto a
simpler form for the matrix equation of motion.

If the constraints are independent, then the left-hand matrix in the equation of motion is invertible (not necessary
in a classical way). Discussions about this property of inversion could be found in [2], where the authors deal
with the Moore-Penrose inverse for the matrix of constraints.

For the planar cases one may consider a simplified version of the method (the tranglation along the axis Oz, and
the rotations about the axes Ox and Oy vanish). This is equivalent to consider particular initial conditions for

this parameters, and no motion corresponding to them. The paper also includes a complete solved example.
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