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DYNAMICS OF THE FOUR-BAR MECHANISMS WITH RRR OR RTR
DYADS BY A MULTIBODY APPROACH

Nicolae–Doru Stănescu1

1 University of Pitești, Pitești, ROMANIA, e-mail s_doru@yahoo.com

Abstract: This paper continues our previous one applying the theory developed for the case of mechanical systems with an
arbitrary number of rigid bodies to the case of two very often met mechanisms. The calculation is conducted until complete
solve of the problem. The equations are nonlinear and the results can be obtained only by numerical calculation.
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1. INTRODUCTION

Generalizing the equation in [1], in our previous work [2] we presented the matrix equation of motion for a
mechanical system in the form
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the significance of the parameters being given in [2].
In this paper we will consider two mechanisms, very often met in the practice. The mechanisms contain a RRR,
and a RTR, respectively, dyad.

2. THE FOUR-BAR MECHANISM WITH RRR DYAD
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Figure 1: The four-bar mechanism with RRR dyad.

We consider the four-bar mechanism OABD in Figure 1 for which one knows: the lengths of the bars 1lOA  ,

2lAB  , 3lBD  , the positions of the centers of weight 11 rOC  , 22 rAC  , 33 rBC  , the masses 1m , 2m ,
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3m , the driving moment M , the resistant moment rM , the forces P , and Q that act along the directions of the

bars AB , and BD , respectively. The mechanism work in a vertical plan OXY , the coordinates of the point D

being DX , 0, 0. The mobile system iiii zyxC , 3,1i , are central principal systems of inertia and one knows

ixJ ,
iyJ ,

izJ , 3,1i . One asks to be determine the motion equation of the mechanism.

We choose the Bryan rotational schema. Let us denote by
iCX ,

iCY ,
iCZ , 3,1i , the coordinates of the

centers of weight of the three bars. Theoretically, the system has 18 degrees of freedom, but this number
decreases because the constraints that appear.
The coordinates of the point A on the bars OA and AB are
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the first functions of constraint being
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where    T3211 3211
  CCCC XXYXq .

Since the point A is in the OXY , it also results the constraint function
     0cossinsinsincos 11111114 1

 rlZf Cq . (4)

Similarly, for the point B we get
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 rXrlXf CCq ,
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     0cossinsinsincos 22222228 2
 rlZf Cq . (5)

For the point O we have
  0sincos 1119 1

 rXf Cq ,     0coscossinsinsin 11111110 1
 rYf Cq ,

    0cossinsinsincos 11111111 1
 rZf Cq . (6)

while for the point D one obtains the constraint function
    0sincos 333312 3

 DC XrlXf q

     0coscossinsinsin 333333313 3
 rlYf Cq ,

     0cossinsinsincos 333333314 3
 rlZf Cq . (7)
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One obtains
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We also find
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and the equation of motion
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3. THE FOUR-BAR MECHANISM WITH RTR DYAD
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Figure 2: The four-bar mechanism with RTR dyad.

One considers the mechanism in Figure 2 for which one knows the lengths of the bars 1lOA  , 2lAB  ,

3lED  , the centers of weight of the three bars 1C , 2C , 3C , the positions of these centers of weight given by

11 rOC  , 22 rAC  , 33 rEC  . The point O has the coordinates 0, 0, 0, while the point D has the coordinates

DX , 0, 0. One asks to be determine the equilibrium position of the mechanism knowing that it works in vertical

plan and is acted only by the weights of the bars. In addition, the local reference systems iiii zyxC are central

principal systems of inertia and
ixJ ,

iyJ ,
izJ , 3,1i , are known.

We choose the Bryan rotational schema. Let
iCX ,

iCY ,
iCZ , 3,1i , be the coordinates of the centers of

weight of the three bars relative to the fixed reference system OXYZ . Again, theoretically, the system has 18
degrees of freedom.
The point A offers the first three functions of constraints
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where    T3211 3211
  CCCC XXYXq .

Since the point A is in the plan OXY , we find
     0cossinsinsincos 11111114 1

 rlZf Cq . (20)

Knowing that the point O has the coordinates 0, 0, 0, we get
  0sincos 1115 1

 rXf Cq ,    1111116 coscossinsinsin
1

 rYf Cq ,
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Similarly, we find for the point D
    0sincos 33338 3

 DC XrlXf q ,

     0coscossinsinsin 33333339 3
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for the point B
     0cossinsinsincos 222222211 2

 rlZf Cq . (23)

and for the point E
    0cossinsinsincos 33333312 3

 rZf Cq , (24)
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The last function of constraint results from the condition that the vectors AB and ED are perpendicular, that is
0 EDAB . One gets
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The matrix of constraints  B is formed with the elements
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We also find
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The moving equation reads
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and at the equilibrium we have    1,180q  ,    1,180q  , wherefrom
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On the other hand, since the system has 14 constraints, it would result that it has 4 degrees of freedom, 3 of them

being useless (the rotations about the axes of coordinates ii yC , 3,1i .

The equations (33) take the form
051  , gm162  , 0743  , 074,764,644,434,324,2  bbbbb ,

075,765,655,545,435,325,215,1  bbbbbbb ,

076,766,656,546,436,326,216,1  bbbbbbb , 0137,131  b ,

gmb 2138,132  , 0113  01410,141310,131110,11310,3210,2  bbbbb ,

01411,141311,131111,11311,3211,2111,1  bbbbbb ,

01412,141312,131112,11312,3212,2112,1  bbbbbb , 01313,138  b ,

gmb 31314,139  , 01210  , 01416,141316,131216,121016,10916,9  bbbbb ,

01417,141317,131217,121017,10917,9817,8  bbbbbb ,

01418,141318,131218,121018,10918,9818,8  bbbbbb . (34)

Due to the three useless degrees of freedom, we can choose the initial conditions so that 0321  .

Since the motion is in the OXY we may also consider 0321  .

It results the system
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051  , gm162  , 0743  , 074,744,434,3  bbb ,

075,745,435,3  bbb , 066,656,566,616,1  bbbb , 0137,131  b ,

gmb 2138,132  , 0113  , 01110,11310,3  bb , 01111,11311,3  bb ,

01412,141312,13312,3212,2112,1  bbbbb , 01313,138  b , gmb 31314,139  ,

01210  , 01216,121016,10  bb , 01217,121017,10  bb ,

01418,141318,13918,9818,8  bbbb . (35)

In the general case, we get 03  , 04  , 07  , 010  , 011  , 012  , and the system

051  , gm162  , 066,656,566,616,1  bbbb , 0137,131  b ,

gmb 2138,132  , 01412,141312,13312,3212,2112,1  bbbbb , 01313,138  b ,

gmb 31314,139  , 01418,141318,13918,9818,8  bbbb , (36)

that is a system of 9 equations with 9 unknowns ( 1 , 2 , 5 , 6 , 8 , 9 , 13 , 14 and 1 ).

Between the variables 2 , 3 , and 1 there exist the relations

DXllAE  33113 sinsincos , 33113 coscossin  llAE ,

3
2

331133
2

3311 coscoscossinsinsinsin  llXll D ,

  0sinsincoscos 3311311  lXll D . (37)

4. CONCLUSION

In this paper we presented two applications of the theory developed in our previous work. The examples consist
in two four-bar mechanism with RRR or RTR dyad. For the first case we determined the matrix equation of
motion, while for the second we obtained the system of equations from which one deduces the possible positions
of equilibrium.
One may observe that the great task of the method is to obtain the matrix of constraints for each case. The
existence of the useless degrees of freedom leads to possible singular matrix of inertia (see the discussion at the
end of [2]). In our situation, this inconvenient may be avoided by choosing particular initial conditions and
assuming that there is no motion corresponding to the useless degrees of freedom.
As it was presented, the method is more difficult than the classic one for the planar mechanisms. One may
reduce the complexity of the method considering directly the planar case. In this situation, the mass matrix
reduces to a third order square one.
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