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Abstract: This paper continues our previous one applying the theory developed for the case of mechanical systems with an
arbitrary number of rigid bodies to the case of two very often met mechanisms. The calculation is conducted until complete
solve of the problem. The equations are nonlinear and the results can be obtained only by numerical calculation.
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1. INTRODUCTION

Generalizing the equation in [1], in our previous work [2] we presented the matrix equation of motion for a
mechanical system in the form

{[[h:%]] _ [[SHF }} {{{ }} [B{]{q}} €
the significance of the parameters being given in [2].

In this paper we will consider two mechanisms, very often met in the practice. The mechanisms contain a RRR,
and aRTR, respectively, dyad.

2. THE FOUR-BAR MECHANISM WITH RRR DYAD
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Figure 1. The four-bar mechanism with RRR dyad.

We consider the four-bar mechanism OABD in Figure 1 for which one knows: the lengths of the bars OA = I,
B =1,, BD = l;, the positions of the centers of weight OC, =r;, AC, =r,, BC; = r3, the masses m, m,,
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m,, the driving moment M , the resistant moment M, , theforces P, and Q that act along the directions of the
bars AB, and BD , respectively. The mechanism work in a vertical plan OXY , the coordinates of the point D

being Xy, 0, 0. The mobile system Cix vz, i = 1,3, are central principal systems of inertia and one knows
N N A 1,3 One asks to be determine the motion equation of the mechanism.

We choose the Bryan rotational schema. Let us denote by X¢ , Yo, Zc , 1 = 1,3, the coordinates of the

centers of weight of the three bars. Theoreticaly, the system has 18 degrees of freedom, but this number

decreases because the constraints that appear.
The coordinates of the point A onthe bars OA and AB are

ENEES 0 X¢, — (I - r,)cos0; sin g,
Ya |=|Ye [+[A]l -1 |=|Ye +(1-r)-siny,sin sing, + cosy, cose,)|,
1 Za| | Ze 0 Zc, + (I, - 1, {cosy, sin @ sing; + siny, cosg, )
[ XA _XC2 0 Xc, + 1, €080, sing,
Ya|=|Ye, [+[As] =12 |=|Ye, —ra(-siny,sin0, sing, + cosy, cosg,) |, @)
Za| | Ze, 0 Zc, — 1y(cosy, SN0, Sing, + siny, cose,)

the first functions of constraint being
f,() = X¢, = (I, = 1) cos0; sing; — X¢, — 1,080, sing, =0,

f,(q) = Ye, + (I, = (= siny,; Sin 6; Sin ¢y + cos; COS @y ) -
~Ye, + (- siny, sin®, sing, + cosy, cose,) = 0,
f3(q) = Z¢, + (I, — 1, {cosy, Sin O, sin g, + siny; cosg,) -
— Z, + 1y(cosy, sinB, sing, + siny, cosey) = 0, ®)
where {q} = [X¢, Yo, - 01 @1 Xe, - 92 Xg, e @a -
Sincethe point A isinthe OXY , it also results the constraint function
fo(a) = Z, + (I, — r)cosy; sin6; sing; + siny, cosey) = 0. (4)

Similarly, for the point B we get
f (q) = XCZ - (I - r2)00892 Sm (P2 - XC3 - I’3 COSO3SII’1 (P3 = 0,

fo(a) = Yo, + + (1, = r,)-siny,sin6,sin g, + cosy, cosp, ) -
= Ye, + (- Sin w3 Sin 05 Sin @ + COS Y5 COSP3) = 0,
f2(a) = Zc, + + (I, = Jcosy, Sin B, Sin g, +siny, COSP,)

fs(q) = 202 +(I, =1, Jcosy, Sin 6, Sin g, +siny, cosp,) = 0. ©)
For the point O we have

fo() = X, — 1 cos0 sing, =0, fio(d) = Yg, — r(-siny; sin6; sin gy + cosy, cosg,) = 0,

fu(a) = Ze, — r(cosy, sin 6, sin @, + siny; cos ;) = 0. (6)

while for the point D one obtains the constraint function
f1o(@) = Xeg = (I3 — r3)cosb3sin gy — Xp = 0
fia(a) = Yo, + (I3 = r3)(Sin w3 SiN B 5N @ + COS 3 COS ;) = O,

f14(0) = Zg, + (I3 - r3}(cos Y3 SiN 05 5N @5 + Sin w3 COS3) = 0. @
We denote b ; = o y b= i v oo B = i o Bgg = ﬁ i =1,14, the matrix of constraints
axcl 6YC1 acpl 0Qs
being
b bBo - bBras
B]= b1 bz,z - bos | ®

b14,1 bl4, 2 bl4 18
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One obtains

Blia} =

Wealso find

{FS:L } = [0

_ Q, 561 + b1 6Py + F.)l,lléz + t'h.,lz('Pz .
bg, aY1+ bz 5(?1 + bz 6P + l?2,1o\i’2 + pz,lléz + lf’z,lz(\bz
bs 4¥1 + 03 56, + bs 61 + b3,1o\i/g +b3110, + 03150,
o ‘b4, 4V +’b4,5§1 + p4, 601 .
_ bs,lleg + b5,12(i>.2 + b5,176§ + bz,lo\i’g + bs,ls(b_s,
B 10W 2 + be,lléz + 05,1202 + Bg 16W3 + b6,l7é3 + b 1803

b7 102 + l3"7,116.)2 + b7 120, + b7, 1695 + l3"7,17(33 + b7,18(;[)3

bs,lo\i/g + bS,llé.Z + bs,lz(bz
. by, 561 + by, 6('P1.
bio, aW1 + bio, 501 + Bio, 6P1
bu, 4}1’1 + bu, 59.1 + bu, 6P1
b12,1793 + by 1803
t:)l3,16\iI3 + k:)13,1793 + t:)13,18¢3
Brg 16W3 + b14,17(.93 + b4 1803

~mg O, (M,}=[ooMmT, {FBl}: [er{l\/ll}{

{Fsz}: |:P(XA - Xg) P(Ya-Yg

I I

El=JalsTlo)+aJsTl

{F }_ {Q(XD - XB) P(YD _YB)

I3 I3

Fol=JoTbe lol Tl IQIM

[
[M]=[0s

Fol = Il Bl R T T RS

{Eq}:

and the equ_ati

{[M] -
[B] [014,14]

EJ RS R RS RS RS

on of mo{t;jo}n ]
[B]T} HiB] ) {Fq}}

7%4
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3. THE FOUR-BAR MECHANISM WITH RTR DYAD
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Figure 2: The four-bar mechanism with RTR dyad.

One considers the mechanism in Figure 2 for which one knows the lengths of the bars OA=1;, AB =1,
ED = |5, the centers of weight of the three bars C;, C,, C;, the positions of these centers of weight given by
OC, =r, AC, =r1,, EC; =r;. Thepoint O hasthe coordinates 0, 0, 0, while the point D has the coordinates
Xp » 0, 0. One asks to be determine the equilibrium position of the mechanism knowing that it works in vertical
plan and is acted only by the weights of the bars. In addition, the local reference systems C,x Y,z are central

principa systems of inertiaand J, , J,,

o dg = 1,3, are known.
We choose the Bryan rotational schema. Let Xc , Yo, Z¢ , | = 1,3, be the coordinates of the centers of

weight of the three bars relative to the fixed reference system OXYZ . Again, theoretically, the system has 18
degrees of freedom.
Thepoint A offersthe first three functions of constraints
f,() = X¢, = (I, - 1) cos0; sing; — X¢, — 1,080, sing, =0,
f,(q) = Ye, + (I, = (= siny,; Sin 6; Sin ¢y + cos; COSy )
~Ye, + (- siny, sin®, sing, + cosy, cose,) = 0,

f4(q) = Ze, + (I, — r,Ncosy, sin 6, sin g, + siny, cosg, ) -

. . . (19)
- L, + rz(cosw2 SN, sing, +siny, cos<p2) =0,
where {q} = [X¢, Yo, - 01 @1 Xc, - 92 Xg, o @a -
Sincethe point A isinthe plan OXY , wefind
fo(a) = Z, + (I, — r)cosy; Sin6; sing; + siny, cosey) = 0. (20)
Knowing that the point O has the coordinates O, 0, 0, we get
f5(a) = X, + 1, cos0; sing; =0, fs(a) = Y, — n(- siny; sin@; sin g, + cosy, cosgy ),
f,() = Zg, - r(cosy; sin6; sing, + siny, cosey). (21)
Similarly, we find for the point D
fg(a) = X¢, — (I3 = 13)cos035in @3 — Xp =0,
fo(a) = Ye, + (I3 — r3)— Siny3 Sin 05 Sin @3 + COSy5 COSp3) = 0,
f10(a) = Zc, + (I3 - r3)(Cos w3 SN B 5in 3 + Sin 3 cose;) = 0, (22)
for the point B
f11(a) = Zc, + (I, — r,)cosy, SO, sing, + siny, cos,) = 0. (23)
and for the point E
f12(0) = Zc, — r3(cos w3 SiN B3 SiN @z + Siny5 COSp3) = 0, (24)
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f15(q) = —[XC3 — X¢, + 130505 SiN @z + (I, — 1,)c0s0, sin 2]
“ly(~siny,sinB, sing, + cosy, COs, ) — (25)
- [Yc3 ~Ye, = f3(— SinyzSin0;sin g3 + cosy COS(p3)]2 cosh, sing, = 0.

The last function of constraint results from the condition that the vectors AB and ED are perpendicular, that is
AB -ED = 0. Onegets

f14(q) = 1,13 c0s6, sin ¢, cOsO5 Sin @5 +

+1,l3(~siny,sinB,sing, [~ siny; SinB; Sin@; + CoS\y; CoS@g) = 0. (26)
T%mmﬂommﬂmms&hﬁmm&wMﬂ%dmmqu:g%qizfﬁ,jzf@.
Weadlso find
Fof=0-mg of, F,j=[0-mg o', ., }=[0 - mg O, (27)
B, )-forbalo) loTlobeJa] o | @
P,

Fl-lod B, |- JalsTlols laJsTi | -
{Fq}= [{Fsl }T {Fﬁl }T {Fs2 }T {Fﬁz T {FS3 T T]T’ (30)

Fl=[BT Rl BT R BT BT )= loua) @y

The moving equation reads
iTINY

— Fq * Fq 32

_[{C} [B]{q} >

160

}\"14
and at the equilibrium we have {q} = {051/, {6} = {0151}, Wherefrom
}\’l
~[BI" & =} (33)
Mg

On the other hand, since the system has 14 constraints, it would result that it has 4 degrees of freedom, 3 of them
being useless (the rotations about the axes of coordinates Cy;, i = 13.
The equations (33) take the form

A —hs =0, Ay —hg =—MG, “Ag—Ay—h; =0, =0y 4hy =054k -0y 404 — 05 4h6 — b7 47 = 0,

—by 5hy — by 5hy — by sk — Dy shy — 05 5hs — bg she —byshy = 0

_bl, 61— b2,67\'2 - bs 6h3 — b4,67\'4 - b5,67‘5 - b6,67\'6 - b7,67\'7 =0, M — QS,77\'13 =0,
Ao — b13,s7¥13 =-myg, A3 =My =0 _b2,107“2 - b3,1o7L3 - bu,107¥11 - b13,107¥13 - b14,107%4 =0,

=By 192 — By 195 = 03 1923 — Byy 1921 — B3 19293 — byg 19294 = 0,

_q127\‘1 - b2,127\’2 - Q,127\'3 - bll, 12}"11 - b13,127\’13 - bl4,127\’14 = O’ 7\‘8 - b13,13}"l3 =0,

Ao — b13,147¥13 = -9, —Mo — M2 =0, _b9,167‘9 - b10,167\'10 - b12,167\'12 - b13,167\'13 - b14,167%4 =0,
_b8,177‘8 - b9,177L9 - b10,177L10 - b12,177‘12 - b13,177‘13 - b14,177‘14 =0,
_b8,18}”8 - b9,187\'9 - b10,187\'10 - blZ,lS}“lZ - bls, 18M3 — b14,1s7¥14 =0. (34)

Due to the three useless degrees of freedom, we can choose the initial conditions so that 6, = 6, =05 =0
Since the motion isin the OXY we may also consider y; = y, = y; = 0.
It results the system
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A — ks =0, Ay —he =-MgQ, “Az3—hs—27 =0, —b3 4k — by kg =07 417 = 0,

_b?.,57‘3 - b4,57w1 - b7,57¥7 =0, —bJ,6M - be,sle - bS,67\'5 - b6,67‘6 =0, M- b13,77¥13 =0,
Ay —bizghiz = -Myg, Az -1y =0, —b3 10h3 — Biy 10h3 = 0, 031943 — byy 1001 = 0,
—By 150 = by 19hy =03 1503 — B3 19Rg3 — By 10094 = 0, Ag —Di313h13 =0, Ao — b3 14093 = —MeQ,
Mo — A2 =0, _b10,167\'10 - b12,16le =0, _b10,177¥10 - b12,177V12 =0,
—bg 187 — Do 18h9 — Dr3 18313 — Dig 18R = 0. (35)
Inthe general case, weget A3 =0, A, =0, A; =0, &g =0, Ay =0, Xy, = 0, and the system
M+hs =0, Ay + kg =MQ, by gh1 + D 6he + D5 615 + D5 6h = 0, Ay — bz 7h3 =0,
Ay —bizghiz = -Myg, By 1921 + by 19hp + B3 1503 + big 1ohg3 + by 15hg = 0, Ag —Dbi313h43 =0,
Mg = D3 14h13 = —M30 , Bg 165 + By 1hg + Di3 1813 + Digaghas = 0, (36)

that is a system of 9 equations with 9 unknowns (A;, A5, Ag, Ag, Ag, Ag, A3, Agq @D @y).

Between the variables ¢, , ¢4, and o, there exist the relations
AE cosp; = -l sing, + 38N — Xp, AE sin @5 = |, coso, + I3 cose,
—l;sing@; sing; —I38N% @3 — Xp Singg = |; COS@, COSP4 + |5 COS? @,
|, cos @, cos@g + (I, Sing, + Xp)sings + 13 = 0. (37)

4. CONCLUSION

In this paper we presented two applications of the theory developed in our previous work. The examples consist
in two four-bar mechanism with RRR or RTR dyad. For the first case we determined the matrix equation of
motion, while for the second we obtained the system of equations from which one deduces the possible positions
of equilibrium.

One may observe that the great task of the method is to obtain the matrix of constraints for each case. The
existence of the useless degrees of freedom leads to possible singular matrix of inertia (see the discussion at the
end of [2]). In our situation, this inconvenient may be avoided by choosing particular initial conditions and
assuming that there is no motion corresponding to the useless degrees of freedom.

As it was presented, the method is more difficult than the classic one for the planar mechanisms. One may
reduce the complexity of the method considering directly the planar case. In this situation, the mass matrix
reduces to a third order square one.
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