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THE INFLUENCE OF TEMPERATURE’S CHANGE ALONG THE
RADIUS ON THE MEMBRANE STRESSES FIELD AT ROTATING

DISKS

Conf. Dr. Eng. Ioana Comanescu1, Prof. Dr. Eng. Gheorghe N. Radu 1
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Abstract: The rotation of a disk with constant angular velocity  leads to a membrane stresses field; traction stresses which
can be solved with the equations below [4]:
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where - the constant values A and B are determined as a function depending are imposed support condition, for each case
partly;

E – is the material’s longitudinal modulus of elasticity;
 - is Poisson’s ratio;

g


- is the specific mass of the disk’s material;

In the present paper, for the temperature’s distribution along the disk radius, one uses the following law:
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 = 1/3, ½, 1, 2 … 30, a and b being the inner and the outer radius of the disk, respectively.
Keywords: Disk, eigenvalues problems, membrane stresses, critical stresses, stability.

This stresses field introduces a great influence upon the membrane stresses field given by the change
of temperature along the radius and one established that its implication on the appearance of elastic
stability loss at disks is very important.
The above mentioned influence is put on evidence on basis of the exposed theory, meaning equations
(4) and (5) from part I, which are eigenvalues problems which lead to the determination of critical
membrane stresses, where the stability loss may occur and to the determination of vibration
eigenfrequencies and eigenmodes, respectively.
Based on the known solutions of the two mentioned problems, on their interdependence, one sets the
problem of finding the solution of the eigenvalues problem given by equation (6) – (21)
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In part I the parabolic dependence between the eigenvalues i and i was established and one puts in
evidence that in the case of more existing membrane stresses fields which work simultaneously, the
elastic loss of stability at disks occurs when the following equation is accomplished:

6th International Conference
Computational Mechanics and Virtual Engineering 

COMEC 2015
15-16 October 2015, Braşov, Romania



432

1 n
i

n




(22)

One assumes that the critical stresses given by the two studied membrane stresses fields are known
(rotational motion and temperature).
One puts in evidence the linear dependence of the critical fields mentioned above, given by equation:
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where T represents the eigenvalues due to the membrane stresses field given by the change of
temperature along the radius; R – represents the eigenvalues due to the membrane stresses field given
by the rotational motion.
If one makes in equation (23) the following replacements:
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If the eigenvalues   RT , than from equation (24) yields:
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One reaches to a very important conclusion, that  = 1 at the superposition of the effects of the two
membrane stresses fields only if the following condition is accomplished:
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getting finally the equation :
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where T0 represents the change of temperature along the radius due to which the elastic stability loss
by the disk branching off (buckling) occurs, in the presence of the two membrane stresses fields .
Fig. 2 shows the change of critical temperatures for stability loss as a function of the disk radius ratio,
for different combinations of the number of nodal diameters and nodal circles.

Based on the conclusions yielded from equation (23) one calculated Tcr,
2
cr and T0, the results being

tabular presented.

One mentions that in calculations we considered more ratios
b

a
 , and also more types of occurring

the loss of stability, which is put in practice by: zero or more nodal circles joined with zero or more
modal diameters.
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Fig. 2

The solutions of the elastic loss of stability at disks subjected to different combinations based on
computational methods, put in evidence that the condition  = 1 is accomplished not only for zero
nodal circles and zero nodal diameters but for other situations too. One enumerates some of them:
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The other studied situations are not for practical importance because it increase very much the
temperature difference and these cases are not met in practice.
By i and n are denoted the number of nodal circles and of nodal diameters, respectively.
In the tables met in the present paper one presents the critical temperatures of stability loss, and also
the interdependence of the membrane stresses fields.
Tabel 3.1.
Plate on mandrel

- The table contains the values on Tcr

-  = 30 (coefficient from the temperature’s
law of distribution)

- T = 10C

Table 3.2
- Disk on mandrel
- Number of nodal circles: C = 0
-  = 1 (coefficient from the temperature’s law of
distribution)
- T = 10C;  n = 1000 rot/min

Table 3.3.
- Disk on mandrel
- Number of nodal circles: C = 1
-  = 1 (coefficient from the temperature’s law

of distribution)
- - T = 10C;  n = 1000 rot/min

Table 3.4
- Disk on mandrel
- Number of nodal circles: C = 2
-  = 1 (coefficient from the temperature’s law of distribution)

- T = 10C;  n = 1000 rot/min

- Table 3.1. Table 3.2.
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- Table 3.3. Table 3.4.

Based on the exposed theory and on the FEM study the way of stability loss for different combinations
of nodal diameters and nodal circles is shown in Fig. 3. One establishes that the condition  = 1 is
accomplished and so the solutions are in concordance with the theory.
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Fig. 3

Fig.4 Fig.5.
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