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Abstract. In our paper we establish the geometric relations that have to hold 
true due to the spherical contact between different geometric elements of a 
valve actuation mechanism. Using these relations one may determine the rota-
tion angle of the lever as function of the rest of the parameters, and the maxi-
mum rotation angle as function of the contact position between the lever and the 
valve. Numerical applications and different diagrams of variation highlight the 
theory. 
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1 Introduction 

The problem of the valve actuation mechanism with different type of contact between 
the cam and tappet, and between the lever and the head of the valve is of great impor-
tance in the field of automotive. Different types of cam-follower mechanisms are 
studied in the literature [1]. Some of the modern automobiles use now roller tappet 
mechanism and spherical contact between the lever and the head of the valve. The 
general synthesis of a distribution mechanism with general contact curve is described 
in [2]. The problem of a continuously variable valve lift mechanism from the point of 
view of the analytical synthesis and kinematic analysis is discussed in [3]. The gener-
al method used in the cam synthesis may lead to singularities which may cause fail-
ures in functioning. A new method to obtain convex cam is to use the Jarvis march 
which assures the convexity of the cam [4, 5]. 

The study of such mechanism leads to complicate formulae and the determination 
of different parameters that appear in these formulae cannot be made in an analytical 
way. For these reasons a numerical solution must be given. In addition, the accuracy 
of the results is obtained using a very small scale (in our paper we used a precision of 
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10-13, that is, the solving of the non-linear systems obtained in the paper is performed 
until the absolute value of the function is less than this value). 

Moreover, the derivatives of the rotations angle in function of the rotation angle of 
the crankshaft have to be determined using the theory of the implicit functions. These 
derivatives will be developed in another paper in which we will discuss the synthesis 
of the cam mechanism. 

Based on the previous considerations, we have drawn some diagrams which 
present the variations of the rotation angle as function of different other parameters. 

2 Description of the system 

The considered system (Fig. 1) consists in the bar (which symbolizes the lever) OC2 
having the length equal to l, and having at its end a roll of radius R2. In the initial 
position the angle between the bar and the horizontal direction is equal to β0, which is 
known. The rotation of the valve about its own axis of symmetry is a redundant de-
gree of freedom which is not important in our analysis. For this reason, the problem 
may be considered a planar one and the sphere-sphere contact is presented as a con-
tact between two circles situated in the same plan. The physical realization of the 
contact uses two spheres because the elimination of the rotation of the valve is a com-
plicate task, and this rotation is wished from the point of an uniform wear of the lever 
and valve. 
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Fig. 1. The mechanical system 
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The roll of radius R2, supports at any moment of the motion, on an arc of circle of 
radius R1; the center of this circular arc is situated at the distance d from the vertical 
axis Oy. 

We may write the relation 

0cos b= ld .     (1) 

The displacement of the valve in vertical direction with the distance s leads to the 
displacement of the circular arc of radius R1, so that the center C1 of this arc moves 
from the position C10 to the new position C1, but remaining situated at the distance d 
from the axis Oy. 

The bar of length l rotates such that the roll of radius R2 remains tangent to the cir-
cular arc of radius R1, while the angle between the bar OC2 and the axis Ox takes the 
value β. 

The systems must assure a required maximum displacement of the valve, smax. This 
value is necessary for a good intake of the fuel in the cylinders. 

3 Geometric considerations 

The coordinates of the point C2 (the center of the roll) read 

b= cos2 lx ,    b= sin2 ly .     (2) 

The circle of center C1 has the equation 

( ) ( ) 2
1

2
1

2
1 Ryyxx =-+- ,     (3) 

where x1 and y1 are the coordinates of the center C1, 

dx =1 , 11 Rshy -+= .     (4) 

The equation of the circle of center C2 and radius R2 has the form 
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The intersection point of the two circles is obtained as the solution of the following 
system 
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Subtracting the two equations (6), term by term, one obtains the relation 

( )( ) ( )( ) 2
2

2
112211221 22 RRyyyyyxxxxx -=---+--- , (7) 

where from it results the expression 
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Denoting 
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the expression (8) becomes 
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where from 
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Replacing now in the first relation (6), one gets 
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expression which leads to the equation 
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With the aid of the notations 
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the expression (13) may be put in the form of a second degree equation in the un-
known x, 

022
2

2 =++ CxBxA .  (15) 

The tangency condition of the two circles implies that the equation (15) has a 
unique solution in the unknown x, that is, its discriminant vanishes, 

04 22
2
2 =-=D CAB .  (16) 

Keeping into account the relations (2), one successively obtains 
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We denote 

( )2
1

2
1

22
2

2
13 yxlRRA +-+-=   (19) 

and we get 
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The equation (16) becomes now 
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from which one determines the angle β. 
Obviously, this method is not the only one which determines the angle β. All the 

methods lead to a non-linear equation which has to be solved by numerical methods. 
We preferred to use this method for the simplicity of the partial derivatives of the 
function described in equation (21). 

The partial derivatives of this function are used to determine the derivative of the 
angle β with respect to the parameter s (the displacement of the valve) and, conse-
quently, the derivative of the same angle with respect to the rotation angle of the 
crankshaft. These derivatives can be obtained using the theory of the implicit func-
tions. 

If the head of the valve is a planar one, then one has to consider in expression (21) 
that R1 ® ¥, that is, R2/R1 ® 0. 
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4 Numerical example 

Let us consider as known values the following data: β0=30º, l=50 mm, R2=5 mm, 
R1=25 mm, s=12 mm. 

It successively results 

mm 30127.43cos 01 =b== ldx , mm 30sin 20 =+b= Rlh ,  
mm 711 =-+= Rshy , ( ) mm 14512

1
2
1

22
2

2
13 =+-+-= yxlRRA  (22) 

The solutions of the equation (21) are 

°=b 0.451 , °=b 4.572 .  (23) 

Obviously, only the value β1 will be kept. 
The diagrams of variation of the angle β in function of the parameters R1, R2 and s 

are captured in Figs. 2, 3, and 4. 
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Fig. 2. The variation ( )1Rb=b  
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Fig. 3. The variation ( )2Rb=b  
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Fig. 4. The variation ( )sb=b  

Analyzing these figures one may conclude that the angle β increases when the ra-
dius R1 increases, and it decreases when the radius R2 increases. These variations are 
non-linear ones, and the influence of the radius R1 is greater than that of the radius R2. 
The variation of the angle β in function of the valve's displacement s is a quasi-linear 
one. 

5 Determination of the possible values 

Using the schema presented in Fig. 5, one may write 
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Fig. 5. The geometric schema 



50 N.D. Stanescu et al.  
 

 

b
=

d sinsin
2 ACl ,  (26) 

b-+

b
=d

cos2

sinsin
22 lddl

l
.  (27) 

2112 RRCC -= ,  (28) 

a
=

j sinsin
121 CCh ,  (29) 

21

1 cossin
RR

h
-

d
=j ,  (30) 

.  
cos2

sin1arcsin

cos2
sinarcsin90

22

22

21

1

22

÷
÷

ø

ö

ç
ç

è

æ

b-+
b

-
-

+

÷÷
ø

ö
çç
è

æ
b-+

b
-=j+a=g

lddl
l

RR
h

lddl
l

 (31) 

From the bending condition of the valve (due to the eccentricity of the contact 
point, the valve is acted by an eccentric force during its operation cycle, that is, this 
force has a maximum value obtained from the theory of the strength of materials), the 
angle γ is limited to a maximum value 

maxg£g   (32) 

and from the formula (31) we get 
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relation from which one determines the maximum value βmax. 
In the case of the considered numerical example, taking γmax=60º, one obtains the 

value 

0
max 1.55=b .  (34) 
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6 Conclusion 

In this paper we performed a geometric study of the contact between the lever and the 
head of the valve for a spherical contact. We determined the rotation angle of the 
lever and its maximum values resulted from the bending condition of the valve. 
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