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Abstract. The paper addresses the issue of the influence that the law of friction 
has on the dynamic behavior of the mechanical system that interacts with a tri-
bosystem. The emergence of certain nonlinearities of higher order into the law 
of friction leads to an intensification of the dissipative process and to tribosys-
tem destabilization. Consequently, friction excited self-oscillations are generat-
ed into the elements of the mechanical system with a wide spectrum of frequen-
cies, sustained from the external source of energy. The theoretical and experi-
mental modeling of the dissipative process and of the generation of is based on 
the frictional harmonic oscillator that interacts with the tribosystem. The oscil-
lator is used as a sensitive element to the fluctuations of the frictional force and 
as a measure of the dissipated energy. Starting from the model, the elaboration 
of a method and of devices for experimental research provided the opportunity 
to study the behavior of the tribosystem in unstable operating.  

Keywords: tribosystem, friction, sliding, wearout, Lagrange equation 

1 Introduction 

As functional components of mechanical systems, tribosystems collaterally affect the 
former’s dynamic behavior and have a predominant role in energy dissipation. The 
evolution character of the dissipative process is influenced and correlatively con-
nected with the friction characteristic (law) occurring at the relative motion of contact 
surfaces. At present, a series of different laws have been formulated only for dry fric-
tion: simple-static; complicated-dynamic. Considering also lubrication (with Stribeck 
effect), the series of the friction laws diversify [2], [5], [8]. In fact, the laws of friction 
are complex and include the influence of a series of factors of a different nature re-
lated to working, geometric and micro geometric, to tribosystem structure, to the 
source, properties, and characteristics of the materials for triboelements, and to the 
working environment. 
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When nonlinearities of different orders occur into the friction characteristic (with 
fluctuations in the frictional force), in the mechanical system elements are generated 
noises under the form of self-oscillations with a wide spectrum of frequencies [2], [5], 
[8]. The structure of the spectrum, the amplitude and shape of the oscillations are 
influenced by charging parameters, the friction regime and energy dissipation factors, 
the properties and state of the materials for triboelements and the lubricant, the origin 
and intensity of processes arising in the contact area. For problems of such complexi-
ty a reliable research method remains the experimental one. However, experimental 
modeling should be formalized and executed within the framework of the fundamen-
tal equations of nonlinear dynamics. 

2 Dynamic modeling of mechanical system-tribosystem 
interaction  

A model commonly used to describe and study the oscillatory processes in different 
systems is the harmonic oscillator. The oscillator is the basis of both mathematical 
models and necessary technical devices for tests and the experimental research of the 
studied systems.  

 
Fig. 1. Mechanical oscillator scheme 

The oscillator has been accepted as a model for studying the interaction between 
the tribosystem characteristics and the mechanical system (figure 1). It consists of 
block 1 with mass 𝒎𝒎 linkconnected to housing 4, fixed on both sides by means of two 
similar elastic elements 2, of low rigidity 𝒄𝒄. The angular frequency of the oscillator 
is 𝜔𝜔 = �𝑐𝑐 𝑚𝑚⁄ ). The tribological connection between the oscillator and the triboele-
ments is realized through the contact between block 1 and platform 3. Platform 3, 
driven by a crank-type mechanism, performs a translational reciprocating movement 
on guide 5 within distances S, with speed: 

𝑉𝑉 = 𝑟𝑟𝑟𝑟 �𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑𝑚𝑚 +
𝜆𝜆
2

(1 − 𝑠𝑠𝑠𝑠𝑠𝑠2𝜑𝜑𝑚𝑚 )� (1) 
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where:  𝛺𝛺  - the angular speed of the crank, 𝑟𝑟 - the radius of the crank;  𝑙𝑙 - the 
length of the rod; 𝜆𝜆 = 𝑟𝑟

𝑙𝑙
; 𝜑𝜑𝑚𝑚  - the rotation angle of the crank. 

Initially, the 𝑋𝑋 coordinate’s origin of the gravity center of block 1 is in the stable 
equilibrium point  𝑂𝑂. When the platform begins to move with speed 𝑉𝑉 on distance 𝑆𝑆 
distance, block 1, influenced by the friction force 𝐹𝐹𝑓𝑓 , will move in direction  𝑋𝑋 with 
speed 𝑋̇𝑋. The relative speed between the contact surfaces of the friction bond becomes 
𝑣𝑣𝑟𝑟 =  𝑋̇𝑋 − 𝑉𝑉. 

Connecting the oscillator to the tribosystem results in a system composed of two 
subsystems of different nature (mechanical and dissipative) with own dynamic beha-
viour, influencing each other during working. The evolution of the dissipative process 
(of energetic essence) can be studied only from the perspective of Lagrangean formal-
ism, according to which the generalized dissipative force  𝑄𝑄𝑑𝑑  derives from a force 
function called Rayleigh dissipative function [6, 7], defined by the relationship: 

𝛷𝛷𝑑𝑑 = �𝑘𝑘𝑗𝑗 � 𝑓𝑓𝑗𝑗 (𝑢𝑢)𝑑𝑑𝑑𝑑

𝑣𝑣𝑗𝑗

0

𝑁𝑁

𝑗𝑗=1

 (2) 

where: 𝑘𝑘𝑗𝑗  and 𝑓𝑓𝑗𝑗 (𝑢𝑢) – the positive functions defined on spaces 𝑗𝑗 of the contact real 
elementary areas that are dependent on the 𝑞𝑞 = 𝑋𝑋 coordinate and on the generalized 
speed 𝑞̇𝑞 = 𝑋̇𝑋 of the oscillator, on speed 𝑉𝑉 of the platform, and on the internal and 
external parameters of the tribosystem; 𝑣𝑣𝑗𝑗  – the relative local speed of the surfaces on 
the contact real elementary areas of the spaces; 𝑁𝑁 – the number of real elementary 
areas within the boundaries of the contact nominal area. 

 
In the sliding tribosystem the role of dissipative generalized force 𝑄𝑄𝐷𝐷  is played by 

the total force of friction 𝐹𝐹𝑓𝑓 , defined by the gradient of the dissipative force in the 
direction of the relative motion of the contact surfaces [2], [8] 

𝑄𝑄𝑑𝑑 = 𝐹𝐹𝑓𝑓 = −
𝜕𝜕

𝜕𝜕 �𝑋̇𝑋 − 𝑉𝑉�
�𝑘𝑘𝑗𝑗 � 𝑓𝑓𝑗𝑗 (𝑢𝑢)𝑑𝑑𝑑𝑑

𝑣𝑣𝑗𝑗

0

𝑁𝑁

𝑗𝑗=1

= −
𝜕𝜕𝛷𝛷𝑑𝑑

𝜕𝜕𝑣𝑣𝑟𝑟
 (3) 

where: 𝑋̇𝑋 − 𝑉𝑉 = 𝑣𝑣𝑟𝑟  – the generalized speed is represented by the relative speed of 
the surfaces when the platform and the block of the oscillator move.  

The movement of the oscillator under the action of the dissipative forces is de-
scribed by the Lagrange equation 

𝑑𝑑
 𝑑𝑑𝑑𝑑

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑋̇𝑋

� −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝛷𝛷𝑑𝑑

𝜕𝜕𝑣𝑣𝑟𝑟
 (4) 

where: 𝐿𝐿 = (𝑇𝑇 − 𝛱𝛱) – the Lagrange function (kinetic potential); �𝑇𝑇 = 𝑚𝑚 𝑋̇𝑋2

2
� - the 

kinetic energy of the oscillator; �𝛱𝛱 = 𝑐𝑐 𝑋𝑋
2

2
� – the potential energy accumulated into 

the elastic elements of the oscillator. 
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If the working parameters are maintained at constant level, the oscillator asymptot-
ically stabilizes his position temporarily “freezing” in the vicinity of the unstable 
equilibrium point 𝑂𝑂∗ (figure 1) with coordinate 𝑋𝑋∗. When the position of the block is 
stabilized, speed  𝑋̇𝑋 → 0, and the contact relative speed become𝑠𝑠 𝑣𝑣𝑟𝑟 = −𝑉𝑉. In this 
state the oscillator passes in a steady and stable working mode relative to the point 𝑋𝑋∗, 
where block 1 will be in the balance of forces in the movement direction of the plat-
form �𝐹𝐹𝑓𝑓 + 𝐹𝐹𝑒𝑒 = 0�, where: 𝐹𝐹𝑓𝑓 = 𝐹𝐹𝑐𝑐  – the constant component of the Coulomb type 
friction force; 𝐹𝐹𝑒𝑒 = −𝑐𝑐𝑋𝑋∗ - the force of elasticity. On the oscillator’s passing in steady 
state, the dissipative friction force between the block and the platform remains linear-
ly dependent on the generalized coordinate 𝑋𝑋∗and the platform speed 𝑉𝑉. 

 
Lagrange equation for the steady state conditions of the oscillator takes the form. 

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋∗

=
1
2
𝑐𝑐
𝜕𝜕
𝜕𝜕𝑋𝑋∗

(𝑋𝑋∗)2 = 𝑐𝑐𝑋𝑋∗ = −
𝜕𝜕𝛷𝛷𝑑𝑑

𝜕𝜕(−𝑉𝑉) = 𝐹𝐹𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (5) 

According to (5), the friction force 𝐹𝐹𝑐𝑐  and the energy dissipation power Pd(V) for 
motion with relative speed (−𝑉𝑉). 

𝐹𝐹𝑐𝑐 = 𝑐𝑐𝑋𝑋∗               𝑃𝑃𝑑𝑑(𝑉𝑉) =  −𝑐𝑐𝑋𝑋∗𝑉𝑉 (6) 

The loss of stability violates the balance of forces, the movement of the oscillator 
being determined by the variation of the dissipative forces. In the event of some insta-
bility in the operation of the tribosystem, with disruptive fluctuations of the friction 
force, the oscillator passes into a self-oscillation regime maintained from the external 
source of energy. The nature and evolution of the dissipative process can be efficient-
ly set in the analysis result of the oscillator’s motion in the phase space (figure 2) built 
in the phase coordinates 𝑌𝑌 = 𝑋𝑋 and 𝑍𝑍 = 𝑋̇𝑋

𝜔𝜔
. To this aim, the ratio between the motions 

of the representative point 𝑀𝑀 on the phase trajectories for each two cycles in a row (𝑖𝑖) 
and (𝑖𝑖 + 1) are examined step by step. 

In examining the movement on the phase trajectory of cycle i in self-oscillation 
state (figures 1, 2) the coordinate and speed of the oscillator are 

 
 𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑖𝑖∗ + 𝑥𝑥𝑖𝑖 , 𝑋̇𝑋𝑖𝑖 = 𝑋̇𝑋𝑖𝑖∗ + 𝑥̇𝑥𝑖𝑖 ,  
 
where: 𝑋𝑋𝑖𝑖∗ = �𝑋𝑋𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑋𝑋𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 � 2⁄  - average component; 𝑥𝑥𝑖𝑖  - variable 

nent; 𝑋̇𝑋𝑖𝑖∗ = ∆𝑋𝑋𝑖𝑖∗𝜔𝜔 - speed of passage from the previous cycle (𝑖𝑖 − 1) to cycle  𝑖𝑖. On 
the 𝑖𝑖 cycle path, two types of movement can be identified: 1 - with low speed 𝑋̇𝑋𝑖𝑖∗ , 
determined by the variation of the mean component coordinate 𝑋𝑋𝑖𝑖∗ of the cycle; 2 -
with high speed 𝑥̇𝑥𝑖𝑖 , determined by the variation of the 𝑥𝑥𝑖𝑖  coordinate and  angular own 
frequency 𝜔𝜔 of the oscillator. 
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Fig. 2. Representation of self-oscillatory process in phase space 

Admitting the prime integral �𝑋̇𝑋𝑖𝑖
𝜕𝜕𝐿𝐿𝑖𝑖
𝜕𝜕𝑋̇𝑋𝑖𝑖̇

− 𝐿𝐿𝑖𝑖 = 𝐸𝐸𝑖𝑖� of equation (4) as total energy of 
the oscillator, represented in the phasic space (figure 2) through the orbit of level ℎ𝑖𝑖  
drawn with the representative radius 𝑅𝑅𝑖𝑖 ,  is the following is obtained: 

𝐸𝐸𝑖𝑖 =
1
2
𝑐𝑐 �𝑋𝑋𝑖𝑖2 + �

𝑋̇𝑋𝑖𝑖
𝜔𝜔�

2

� =
1
2
𝑐𝑐(𝑋𝑋𝑖𝑖∗)2 + 𝑐𝑐𝑋𝑋𝑖𝑖∗𝑥𝑥𝑖𝑖 +

1
2
𝑐𝑐 �𝑥𝑥𝑖𝑖2 +  �

𝑥̇𝑥𝑖𝑖
𝜔𝜔
�

2
�

=
1
2
𝑐𝑐𝑅𝑅𝑖𝑖2 = ℎ𝑖𝑖  

(7) 

where: 𝑅𝑅𝑖𝑖 = √𝑌𝑌2 + 𝑍𝑍2 = �𝑋𝑋𝑖𝑖2 + �𝑋̇𝑋𝑖𝑖
𝜔𝜔
�

2
- the representative radius of the ℎ𝑖𝑖  orbit at 

intersection with the trajectory of the representative point 𝑀𝑀𝑖𝑖 trajectory at movement 
on cycle in the phasic space. 

 
Differentiating equation (7) by time, the energy variation of the oscillator and the 

evolution of the dissipative process under the influence of the friction force during the 
𝑖𝑖 cycle is determined: 
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𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑐𝑐 �𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖̇ +
𝑋𝑋𝑖𝑖̇ 𝑋𝑋𝑖𝑖̈
𝜔𝜔2 �

= 𝑐𝑐 �𝑋𝑋𝑖𝑖∗𝑋̇𝑋𝑖𝑖∗ + �𝑋𝑋𝑖𝑖∗𝑥̇𝑥𝑖𝑖 +
𝑋̇𝑋𝑖𝑖∗𝑥̈𝑥𝑖𝑖
𝜔𝜔2 � + �𝑥𝑥𝑖𝑖𝑥̇𝑥𝑖𝑖 +

𝑥̇𝑥𝑖𝑖 𝑥̈𝑥𝑖𝑖
𝜔𝜔2 ��

= 𝑐𝑐𝑅𝑅𝑖𝑖𝑉𝑉𝑛𝑛𝑖𝑖  

(8) 

where: 𝑉𝑉𝑛𝑛𝑖𝑖   – the projection of the phasic speed 𝑉𝑉Φ𝑖𝑖  on the direction of the normal 
𝑛𝑛𝑖𝑖� , drawn through the 𝑀𝑀𝑖𝑖  representative point moving on the phasic trajectory of the 
cycle when intersecting the representative orbit ℎ𝑖𝑖 . From a dynamic point of view, 𝑉𝑉𝑛𝑛𝑖𝑖  
is the rate of change (dissipation) of the oscillator’s energy at movement of the 𝑀𝑀𝑖𝑖  
point on the phasic path. 

 
According to relation (8), the variable component of the oscillator’s energy in-

cludes three groups of factors: 
 
1. 𝑋𝑋𝑖𝑖∗𝑋̇𝑋𝑖𝑖∗– for variation of the low speed and low frequency component; 
2. 𝑥𝑥𝑖𝑖𝑥̇𝑥𝑖𝑖 + 𝑥𝑥̇𝑖𝑖𝑥𝑥̈𝑖𝑖

𝜔𝜔2  - for variation of the high speed and high frequency component; 

3. 𝑋𝑋𝑖𝑖∗𝑥̇𝑥𝑖𝑖 + 𝑋̇𝑋𝑖𝑖
∗𝑥𝑥̈𝑖𝑖
𝜔𝜔2  – for mutual influence of the low and high speed factors. 

 
Setting the mechanical status of the oscillator by experimental methods, based on 

expressions (7) and (8), the normal component 𝑉𝑉𝑛𝑛𝑖𝑖  of the phasic speed is determined, 
which comprises the three groups of influence factors. 

𝑉𝑉𝑛𝑛𝑖𝑖 =  
𝑋𝑋𝑖𝑖𝑋𝑋𝑖𝑖̇ + 𝑋𝑋𝑖𝑖̇ 𝑋𝑋𝑖𝑖̈

𝜔𝜔2

𝑅𝑅𝑖𝑖
=
𝑋𝑋𝑖𝑖∗𝑋̇𝑋𝑖𝑖∗ + �𝑋𝑋𝑖𝑖∗𝑥̇𝑥𝑖𝑖 + 𝑋̇𝑋𝑖𝑖

∗𝑥̈𝑥𝑖𝑖
𝜔𝜔2 � + �𝑥𝑥𝑖𝑖𝑥̇𝑥𝑖𝑖 + 𝑥̇𝑥𝑖𝑖 𝑥̈𝑥𝑖𝑖

𝜔𝜔2 �

�𝑋𝑋𝑖𝑖2 + �𝑋̇𝑋𝑖𝑖
𝜔𝜔
�

2

= �𝑉𝑉𝑛𝑛𝑖𝑖�
∗∗ + �𝑉𝑉𝑛𝑛𝑖𝑖�

∗ + �𝑉𝑉𝑛𝑛𝑖𝑖�
𝑣𝑣 

(9) 

At temporary “freeze” of the oscillator’s mechanical status in the point of coordinate 
𝑋𝑋𝑖𝑖∗, the instant steady state functioning conditions are obtained fixed on the average 
level of the oscillation cycle generated by the stationary friction force 𝐹𝐹𝑐𝑐𝑖𝑖  at the 
platform movement with speed 𝑉𝑉𝑖𝑖 . Based on relations (5) and (6), the solution for 
friction force and energy dissipation power on the average cycle component is 
obtained. 

𝐹𝐹𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑋𝑋𝑖𝑖∗ (10) 

𝑃𝑃𝑑𝑑𝑖𝑖 �𝑉𝑉𝑖𝑖� =  −𝑐𝑐𝑋𝑋𝑖𝑖∗𝑉𝑉𝑖𝑖  (11) 
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The total energy dissipation power in the contact area for each movement cycle 
consists of two basic components: 𝑃𝑃𝑑𝑑𝑖𝑖 (𝑉𝑉𝑖𝑖) − instantly constant, defined by speed 
𝑉𝑉𝑖𝑖within cycle limits; variable 𝑃𝑃𝑑𝑑𝑖𝑖 (𝑉𝑉𝑛𝑛𝑖𝑖), defined by speed 𝑉𝑉𝑛𝑛𝑖𝑖 . 

𝑃𝑃𝑑𝑑𝑖𝑖 = 𝑃𝑃𝑑𝑑𝑖𝑖 �𝑉𝑉𝑖𝑖� + 𝑃𝑃𝑑𝑑𝑖𝑖 �𝑉𝑉𝑛𝑛𝑖𝑖�
= −𝑐𝑐�𝑋𝑋𝑖𝑖∗𝑉𝑉𝑖𝑖

+ 𝑅𝑅𝑖𝑖𝑉𝑉𝑛𝑛𝑖𝑖)  (12) 

Taking into account relation (9) the following is obtained: 

𝑃𝑃𝑑𝑑𝑖𝑖 = 𝐹𝐹𝑓𝑓𝑖𝑖𝑣𝑣𝑟𝑟𝑖𝑖 = −
𝜕𝜕𝛷𝛷𝑑𝑑𝑖𝑖

𝜕𝜕𝑣𝑣𝑟𝑟𝑖𝑖
𝑣𝑣𝑟𝑟𝑖𝑖

= −�𝑐𝑐𝑋𝑋𝑖𝑖∗𝑉𝑉𝑖𝑖 + 𝑐𝑐𝑅𝑅𝑖𝑖�𝑉𝑉𝑛𝑛𝑖𝑖�
∗∗ + 𝑐𝑐𝑅𝑅𝑖𝑖�𝑉𝑉𝑛𝑛𝑖𝑖�

∗ + 𝑐𝑐𝑅𝑅𝑖𝑖�𝑉𝑉𝑛𝑛𝑖𝑖�
𝑣𝑣� 

(13) 

The total instantaneous value of the friction force during cycle (𝑖𝑖) conditioned by 
the achievement of the working unstable self-osscilation state: 

𝐹𝐹𝑓𝑓𝑖𝑖 =
𝑃𝑃𝑑𝑑𝑖𝑖

𝑣𝑣𝑟𝑟𝑖𝑖
= −�𝑐𝑐𝑋𝑋𝑖𝑖∗

𝑉𝑉𝑖𝑖

𝑣𝑣𝑟𝑟𝑖𝑖
+ 𝑐𝑐𝑅𝑅𝑖𝑖

�𝑉𝑉𝑛𝑛𝑖𝑖�
∗∗

𝑣𝑣𝑟𝑟𝑖𝑖
+ 𝑐𝑐𝑅𝑅𝑖𝑖

�𝑉𝑉𝑛𝑛𝑖𝑖�
∗

𝑣𝑣𝑟𝑟𝑖𝑖
+ 𝑐𝑐𝑅𝑅𝑖𝑖

�𝑉𝑉𝑛𝑛𝑖𝑖�
𝑣𝑣

𝑣𝑣𝑟𝑟𝑖𝑖
�  (14) 

or 

𝐹𝐹𝑓𝑓𝑖𝑖 = �𝐹𝐹𝑐𝑐𝑖𝑖 + �𝐹𝐹𝑣𝑣𝑖𝑖�
∗∗ + �𝐹𝐹𝑣𝑣𝑖𝑖�

∗ + �𝐹𝐹𝑣𝑣𝑖𝑖�
𝑣𝑣� (15) 

where: 𝐹𝐹𝑐𝑐𝑖𝑖 = −𝑐𝑐𝑋𝑋𝑖𝑖∗
𝑉𝑉𝑖𝑖

𝑣𝑣𝑟𝑟𝑖𝑖
; (𝐹𝐹𝑣𝑣𝑖𝑖)∗∗ = − 𝑐𝑐𝑅𝑅𝑖𝑖

�𝑉𝑉𝑛𝑛𝑖𝑖 �
∗∗

𝑣𝑣𝑟𝑟𝑖𝑖
;  (𝐹𝐹𝑣𝑣𝑖𝑖)∗ = −𝑅𝑅𝑖𝑖

�𝑉𝑉𝑛𝑛𝑖𝑖 �
∗

𝑣𝑣𝑟𝑟𝑖𝑖
; (𝐹𝐹𝑣𝑣𝑖𝑖)𝑣𝑣 =

−𝑐𝑐𝑅𝑅𝑖𝑖
�𝑉𝑉𝑛𝑛𝑖𝑖 �

𝑣𝑣

𝑣𝑣𝑟𝑟𝑖𝑖
. 

The component 𝐹𝐹𝑐𝑐𝑖𝑖  (of Coulomb type) of the friction force is defined by the linear 
factors of the dissipative function 𝛷𝛷𝑑𝑑  in the vicinity of the 𝑋𝑋𝑖𝑖∗ coordinated point. The 
variable (fluctuating) components of the friction force (𝐹𝐹𝑣𝑣𝑖𝑖)∗∗, (𝐹𝐹𝑣𝑣𝑖𝑖)∗, (𝐹𝐹𝑣𝑣𝑖𝑖)𝑣𝑣occur as a 
result of various dynamic effects from the contact zone with higher order nonlineari-
ties and may vary in a wide range of frequencies and amplitudes. 

When condition 𝑣𝑣𝑟𝑟 = 𝑥̇𝑥 − 𝑉𝑉 < 0 is accomplished, the 𝐹𝐹𝑐𝑐  component of the friction 
force has always the same sense as platform speed vector 𝑽𝑽 and determines the energy 
dissipation level in the contact zone at relative motion of the surfaces. The variable 
components (depending on the speed signs (𝑉𝑉𝑛𝑛𝑖𝑖)∗∗, (𝑉𝑉𝑛𝑛𝑖𝑖)∗, (𝑉𝑉𝑛𝑛𝑖𝑖)𝑣𝑣sign) can change their 
sign according to direction within the limits of the same oscillation cycle. On the neg-
ative direction, the energy previously accumulated in the oscillator’s elements dissi-
pates in the contact area, and, on the positive direction, through the tribosystem, a 
new portion of energy from the external source is introduced into the oscillator. This 
behaviour relates to the achievement of the dynamic effect of variable dissipation on 
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direction, also called “negative friction” effect, which is the main cause of engender-
ing friction excited self-oscillations in the mechanical system [1], [2], [5], [7]. 

 
Accepting cycle (𝑖𝑖) as a benchmark, at crossing to the next cycle (𝑖𝑖 + 1), the 

𝑋𝑋𝑖𝑖∗ (coordinated point (figure 2) acquires an additional movement ∆𝑋𝑋(𝑖𝑖+1)
∗  with the 

speed  𝑋𝑋(𝑖𝑖+1)
∗  , where: ∆𝑋𝑋(𝑖𝑖+1)

∗ = 𝑋𝑋(𝑖𝑖+1)
∗ − 𝑋𝑋𝑖𝑖∗; 𝑋̇𝑋(𝑖𝑖+1)

∗ = ∆𝑋𝑋(𝑖𝑖+1)
∗ 𝜔𝜔; 𝑋𝑋(𝑖𝑖+1)

∗ =
�𝑋𝑋(𝑖𝑖+1)

𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑋𝑋(𝑖𝑖+1)
𝑚𝑚𝑚𝑚𝑚𝑚 � 2⁄ . The coordinate, the absolute speed and the relative speed within 

the cycle limits (i + 1) with respect to cycle (i) will be: 𝑋𝑋(𝑖𝑖+1) = �𝑋𝑋(𝑖𝑖+1)
∗  + 𝑥𝑥(𝑖𝑖+1)� =

�𝑋𝑋𝑖𝑖∗ + ∆𝑋𝑋(𝑖𝑖+1)
∗ + 𝑥𝑥(𝑖𝑖+1)�;  𝑋̇𝑋(𝑖𝑖+1) = �𝑋̇𝑋(𝑖𝑖+1)

∗ + 𝑥̇𝑥(𝑖𝑖+1)�; 𝑣𝑣𝑟𝑟
(𝑖𝑖+1) = �𝑋̇𝑋(𝑖𝑖+1) − 𝑉𝑉(𝑖𝑖+1)�.   

 
The prime integral of equation (4) for the cycle (𝑖𝑖 + 1) 

𝐸𝐸(𝑖𝑖+1) = 1
2
𝑐𝑐 ��𝑋𝑋(𝑖𝑖+1)

∗ �2 + �
𝑋̇𝑋(𝑖𝑖+1)
∗

𝜔𝜔
�

2
� + 𝑐𝑐 �𝑋𝑋(𝑖𝑖+1)

∗ 𝑥𝑥(𝑖𝑖+1) +

𝑋𝑋𝑖𝑖+1∗𝑥𝑥𝑖𝑖+1𝜔𝜔2   + 12𝑐𝑐𝑥𝑥𝑖𝑖+12+ +𝑥𝑥𝑖𝑖+1𝜔𝜔2=ℎ𝑖𝑖+1  
(16) 

Similarly, the instantaneous frictional force is determined at the motion of the os-
cillator during the (i + 1) cycle 

𝐹𝐹𝑓𝑓
(𝑖𝑖+1) = −𝑃𝑃𝑑𝑑

(𝑖𝑖+1)

𝑣𝑣𝑟𝑟
(𝑖𝑖+1) = −�𝑐𝑐𝑋𝑋(𝑖𝑖+1)

∗ 𝑉𝑉(𝑖𝑖+1)

𝑣𝑣𝑟𝑟
(𝑖𝑖+1) + 𝑐𝑐𝑅𝑅(𝑖𝑖+1)

�𝑉𝑉𝑛𝑛
(𝑖𝑖+1)�

∗∗

𝑣𝑣𝑟𝑟
(𝑖𝑖+1) +

𝑐𝑐𝑅𝑅𝑖𝑖+1𝑉𝑉𝑛𝑛𝑖𝑖+1∗𝑣𝑣𝑟𝑟𝑖𝑖+1+𝑐𝑐𝑅𝑅𝑖𝑖+1𝑉𝑉𝑛𝑛𝑖𝑖+1𝑣𝑣𝑟𝑟𝑖𝑖+1  (17) 

𝐹𝐹𝑓𝑓
(𝑖𝑖+1) =  �𝐹𝐹𝑐𝑐

(𝑖𝑖+1) + �𝐹𝐹𝑣𝑣
(𝑖𝑖+1)�

∗∗
+ �𝐹𝐹𝑣𝑣

(𝑖𝑖+1)�
∗

+ �𝐹𝐹𝑣𝑣
(𝑖𝑖+1)�

𝑣𝑣
� (18) 

The loss of system stability can occur for both types of movements: of low fre-
quency and low speed, and with high frequency and high speed. As an experimental 
criterion for assessing the movement regime, the deviations of the displacements 
∆𝑋𝑋(𝑖𝑖+1)

∗  and ∆𝑥𝑥(𝑖𝑖+1)between each pair of consecutive cycles are used: 
under steady state oscillatory motion 

�
∆𝑋𝑋(𝑖𝑖+1)

∗ = 𝑋𝑋(𝑖𝑖+1)
∗ − 𝑋𝑋𝑖𝑖∗ = 0  

∆𝑥𝑥(𝑖𝑖+1) = �𝑥𝑥(𝑖𝑖+1)
𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥(𝑖𝑖+1)

𝑚𝑚𝑚𝑚𝑚𝑚 � − �𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 � = 0
� (19) 

under unstable state oscillatory motion 

�
∆𝑋𝑋(𝑖𝑖+1)

∗ = 𝑋𝑋(𝑖𝑖+1)
∗ − 𝑋𝑋𝑖𝑖∗ ≠ 0  

∆𝑥𝑥(𝑖𝑖+1) = �𝑥𝑥(𝑖𝑖+1)
𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥(𝑖𝑖+1)

𝑚𝑚𝑚𝑚𝑚𝑚 � − �𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 � ≠ 0
� (20) 
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3 Experimental results 

Based on the above theoretical model, an original model of tribometer was made, 
with a cyclic translational motion and equipped with proper systems for measuring 
the dynamic characteristics (variables) of the system. As dynamic variables the fol-
lowing are used: 

1. displacement 𝑋𝑋𝑖𝑖  (𝑚𝑚𝑚𝑚)i in the movement direction of the platform of the mass cen-
ter of the oscillating part against point “𝑂𝑂” of the oscillator’s stable equilibrium; 

2. linear speed 𝑣𝑣𝑖𝑖 = 𝑋̇𝑋𝑖𝑖(𝑚𝑚𝑚𝑚 𝑠𝑠⁄ ) of the mass center of the oscillating part; 
3. linear acceleration 𝑎𝑎𝑖𝑖 = 𝑋̈𝑋𝑖𝑖 �𝑚𝑚𝑚𝑚 𝑠𝑠2� � of the mass center of the oscillating part; 
4. linear speed 𝑉𝑉𝑖𝑖(𝑚𝑚𝑚𝑚 𝑠𝑠⁄ ) of the platform in the movement direction within the limits 

of cycle 𝑖𝑖 of the oscillator’s oscillation; 
5. cyclic frequency of the platform 𝑛𝑛𝑐𝑐  (𝑚𝑚𝑚𝑚𝑚𝑚−1); 
6. experimental average temperature 𝜃𝜃𝑘𝑘  (𝑜𝑜𝐶𝐶) in the contact area during cycle k of the 

platform movement. 

The dynamic variables are recorded, step by step, in the form of time series for 
each cycle(𝑖𝑖) of the oscillator’s movement and over each cycle (𝑘𝑘) of the platform 
movement.  

Computerized technologies for recording the dynamic variables and for processing 
of the time series were used to study the behavior of the tribosystem in unstable oper-
ating conditions. The evolution of the friction process was estimated through the vari-
ation characteristic (law) of the friction force 𝐹𝐹𝑓𝑓𝑘𝑘 = 𝐹𝐹𝑓𝑓𝑘𝑘(𝑣𝑣𝑟𝑟) for relative speed varia-
tion; the evolution of the dissipative process (energy dissipation) was estimated 
through the work of the friction force 𝑊𝑊𝑓𝑓

𝑘𝑘  cumulated for each cycle (𝑘𝑘) of the plat-
form movement.  

In the case of the translational cyclical movement, the accuracy of local friction 
force determination depends on the resolution 𝑠𝑠 = 𝑇𝑇𝑘𝑘

𝑇𝑇 
s of the system, established with-

in the limits of the platform movement cycle, where 𝑇𝑇 = 2𝜋𝜋
𝜔𝜔

 - the period of the oscilla-

tor’s self-oscillation, 𝑇𝑇𝑘𝑘 = 2𝜋𝜋
𝛺𝛺

 - the period of cycle (𝑘𝑘) of the platform movement. 
Resolution 𝑠𝑠 represents the oscillator’s number of cycles included in a platform 
movement cycle. 

As a benchmark characteristic for establishing the experimental friction law, the in-
tegrated mean within the limits of cycle (𝑖𝑖) period of the local friction force is used 

𝐹𝐹𝑓𝑓 =
𝜔𝜔
2𝜋𝜋

� 𝐹𝐹𝑓𝑓𝑖𝑖
+𝜋𝜋
𝜔𝜔

−𝜋𝜋𝜔𝜔

𝑑𝑑𝑑𝑑 (
21) 

where: 𝐹𝐹𝑓𝑓𝑖𝑖  - the instantaneous value of the friction force within the cycle (i) limits. 
 
The level of energy dissipation (represented by the work of friction forces inte-

grated on period 𝑇𝑇 of cycle (𝑖𝑖)  
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𝑊𝑊𝑓𝑓
𝑖𝑖 = � 𝐹𝐹𝑓𝑓𝑖𝑖

+𝜋𝜋
𝜔𝜔

−𝜋𝜋𝜔𝜔

𝑣𝑣𝑟𝑟𝑖𝑖𝑑𝑑𝑑𝑑 
(

22) 

The work of friction forces (dissipated energy) 𝑊𝑊𝑓𝑓
𝑘𝑘  during the cycle (𝑘𝑘) period of 

the platform movement summed  

𝑊𝑊𝑓𝑓
𝑘𝑘 = �𝑊𝑊𝑓𝑓

𝑖𝑖
𝑠𝑠

𝑖𝑖=1

 (
23) 

The results of the experimental data analysis for a number of couples of materials 
and lubricants revealed a different and complex behavior of the frictional force (figure 
3) on different portions and areas of the characteristics points, at relative movement of 
the contact on the platform cycle strokes (𝑆𝑆). Within a cycle the following are identi-
fied: the DSM stroke of the platform motion on the direct sense of the movement and 
the OSM stroke for opposite movements; portions with acceleration movement (AM) 
per stroke and deceleration movement zones (DM); (ZRP) zones of return points of 
the contact per stroke and (PMS) zones of points of maximal speed of the cycle. If the 
platform is actioned by the crank mechanism, return points with different kinematic 
characteristics are obtained at the end of the strokes: (RPN) - return point near; (RPR) 
- return point removed. A pronounced dynamic behavior of the friction force occurs 
when changing speed direction at entry into and exit from the areas of return points. 

 
Fig. 3. Law of friction determined experimentally for cyclical translatory movement 

During the experimental research, the following conditions were set: oscillator 
mass 𝑚𝑚 =  0,2𝑘𝑘𝑘𝑘; rigidity of the elastic element 𝒄𝒄 =  100𝑁𝑁/𝑚𝑚𝑚𝑚; angular frequency 
of the oscillator 𝜔𝜔 =  6280𝑠𝑠−1; angular frequency of the crank Ω =  31,141𝑠𝑠−1; 
cyclic frequency of the platform 𝑛𝑛𝑐𝑐 = 300𝑚𝑚𝑚𝑚𝑚𝑚−1; system resolution 𝑠𝑠 = 200; contact 
load in two ways (1 – with constant normal loading during the testing period, 2 - load-
ing in consecutive steps); drop lubrication. The experimental temperature θ in the 
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contact area was measured with a K type mini K thermocouple. Temperature evolu-
tion in the contact area occurs due to heat produced at the exhaust of mechanical 
energy. Contact form - flat with dimensions: width 𝑏𝑏 =  2𝑚𝑚𝑚𝑚; length 𝑙𝑙 = 40𝑚𝑚𝑚𝑚. 
Stroke length  𝑆𝑆 = 100𝑚𝑚𝑚𝑚. 

Under study was the tribological behavior of the materials of the pair: block tri-
boelement - electrolytic chromium on a steel surface; platform triboelement - 
38KH2MYUA steel (similar to 41CrAlMo7). The contact was lubricated with MT- 
16P GOST 6360-83 oil (similar to SAE 40 API CB). 

Experimental results are shown in figures 4 and 5. For temperature increase in the 
contact area (figure 4) for a load 𝐹𝐹𝑛𝑛 = 2,0𝑘𝑘𝑘𝑘, the energy dissipation level per cycle 
(𝑘𝑘) of platform movement will vary non-linearly with a trend of asymptotic stabiliza-
tion, between the work values of the friction forces of 𝑊𝑊𝑓𝑓

𝑘𝑘 = (40 … 50)𝑱𝑱. If the oper-
ating parameters are maintained constant (𝐹𝐹𝑛𝑛  load and cyclic speed of the platform 
𝑛𝑛𝑐𝑐 ), process stabilization is complete at temperature values  𝜃𝜃 = (240 … 250)⋄𝐶𝐶. 

 
Fig. 4. Character of the dissipative process and evolution of the friction law with experimental 
temperature variation θ in the contact area for normal force loading 𝐹𝐹𝑛𝑛 = 2,0𝑘𝑘𝑘𝑘. 

Of special importance for determining the dynamic behaviour of mechanical sys-
tems is the evolution of the law of friction in concrete working conditions. Figure 4 
shows a significant influence of temperature on friction force for relative speed 
𝑣𝑣𝑟𝑟  variation per cycle strokes of platform movement. When temperature increases, the 
friction force changes both values and the variation manner per stroke. 
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Different behaviour is identified if the variation of the contact load force 𝐹𝐹𝑛𝑛  takes 
place at constant temperatures θ. To achieve a boundary lubrication regime, during 
the experiment the temperature was maintained at high-level in the contact zone, with 
a permissible variation within 𝜃𝜃 = (200 … 210)⋄𝐶𝐶. When the contact was loaded 
(figure 5), a practically linear dependence of the level of energy dissipation 𝑊𝑊𝑓𝑓

𝑘𝑘  on 
force 𝐹𝐹𝑛𝑛 . was obtained. In this case. the evolution manner of the force in the experi-
mental friction law changes. 

4  Conclusion 

In cases when the friction law (for the couple of materials used in the construction of 
the triboelements) higher order nonlinearities occur, the friction forces generate in the 
mechanical system elements noises as self-oscillations in a wide range of frequencies. 

 
Fig. 5. Nature of the dissipative process and evolution of friction law for variation of the load 
force 𝐹𝐹𝑛𝑛at constant temperature θ into contact area 

Based on Lagrange equation, the dynamic model of the interaction between the 
mechanical system and the tribosystem was developed. The harmonic oscillator with 
elastic elements was accepted as mechanical system for modeling. 

The examination of the dynamic model identified the structure of the friction force 
in unstable operating conditions of the mechanical system. In the structure of the total 
friction force 𝐹𝐹𝑓𝑓  four possible components appear: a component 𝐹𝐹𝑐𝑐𝑖𝑖  (of Coulomb 
type), defined by the linear factors of the dissipative function 𝛷𝛷𝑑𝑑 ; three variable (fluc-
tuating) components within the limits of each oscillation cycle (𝐹𝐹𝑣𝑣𝑖𝑖)∗∗, (𝐹𝐹𝑣𝑣𝑖𝑖)∗, 
(𝐹𝐹𝑣𝑣𝑖𝑖)𝑣𝑣  (occurr as a result of various dynamic effects in the contact zone with higher 
order nonlinearities and can vary over a wide range of frequencies and amplitudes. 

Based on the model with harmonic oscillator, an original model of tribometer has 
been made, with cyclical translational movement, equipped with proper measuring 
systems for the dynamic characteristics of the oscillator, and the method for experi-
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mental determination [3] of the dynamic characteristics of the sliding tribosystem in 
unstable operating regime was developed. 

References 

1. Andronov A A, Vitt A A and Khaikin S E  Teoriya kolebany. Moskva: Nauka (1981) 
2. Armstrong-Helouvry B, Dupont P and Canudas De Wit C A  Survey of Models, Analysis 

Tools and Compensation Methods for the Control of Machines with Friction Automatica, 
30(7) 1083-138 (1994) 

3. Crudu I  Tribomodelarea. București: AGIR (2011) 
4. Kragelskii I V Treniye i iznos. Moskva: Izdatelstvo Mashinostroyeniye (1968) 
5. Kragelsky I V and Gitis N V  Friktsionnye avtokolebaniya. Moskva: Nauka (1987) 
6. Landau L D and Lifshits Ye M  Teoreticheskaya fizika: Mekhanika Tom1 Moskva: Nauka 

(1988) 
7. Lurye A I Analiticheskaya mekhanika. Moskva: Izdatelstvo fiziko-matematicheskoy litera-

tury (1961) 
8. Wojewoda J, Stefanski A, Wiercigroch M and Kapitaniak T  Hysteretic effects of dry fric-

tion: modeling and experimental studies Phil. Trans. R. Soc. A 366 747-65 (2008) 
 




