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DYNAMIC RESPONSE AND ISOLATION DEGREE OF STATIONARY
FORCED VIBRATION IN THE CASE OF VIBRATION SUPPORTS

WITH COMPLEX VISCOELASTIC BEHAVIOR
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Abstract: Through this paper work it seeks to define the dynamic response and the isolation degree of stationary forced
vibrations in the case of vibration isolators supports with the complex viscoelastic behavior. For this purpose, it will analyze
the following complex viscoelastic models: the viscoelastic model Voigt-Kelvin, Maxwell viscoelastic model and Hooke -
Maxwell viscoelastic model (Zener). It is considered that these systems are excited from the outside with a harmonic force.
Following determination of differential equations of motion for each model and identify solutions systems of equations can be
defined the dynamic response and the isolation degree of stationary forced vibrations.
Keywords: dynamic response, isolation degree, stationary forced vibration, complex viscoelastic behavior

1. GENERAL NOTIONS

Stationary vibration is the oscillating motion that, throughout the considered period of time, is not interrupted. It
is considered that the vibration is forced (maintained) if, from the outside, is acting on a structural system with a
disruptive force to maintain motion (introduce energy in the oscillating system). The effect achieved, in this
case, is contrary to the natural tendency of friction damping of the free vibration.
In the following there is provided a forced vibration classification [3]:
a) According to the damping:
- damped: viscous, dry, hysteretic and ordinary;
- without damping.
b) By the nature of disruptive force
- determinist: periodical (harmonic and ordinary), impulse and ordinary;
- random.
The dynamic response of the vibration represent the dynamic evaluation of vibration where the dynamic
excitation point is the headquarters of disruptive force F(t) and the reception point is the headquarters of the
transmitted force FT [1]. The isolation degree of the transmitted vibrations is denoted by I and express the
percent reduction of the vibration [1]:= [1 − ]100 [%] (1.1)
where: T - vibration transmissibility or the transmission degree of vibrations and represents the ratio between
the response parameter (like physical magnitude transmitted) and the excitatory parameter (as physical input).
The vibration supports with complex viscoelastic behavior are support systems which are composed of both
resilient components and viscous damping elements, so the elastic properties combined with the viscous.

2. THE DYNAMIC RESPONSE AND THE ISOLATION DEGREE OF VIBRATION. THE
CASE OF VIBRATION ISOLATORS SUPPORTS WITH THE COMPLEX VISCOELASTIC
BEHAVIOR.

For exemplification considers a system with one degree of freedom of mass m, viscoelastic supported (figure
2.1).
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Figure 2.1: Dynamic model with one degree of freedom, viscoelastic supported [4]

In this case (the system with one degree of freedom or single mass) forced vibration equation is:+ + = ( ) (2.1)
We have:= ∙ – force of inertia;= ∙ – force of dumpping;= ∙ – elastic force.
By replacing relation above in equation (2.1) we get:∙ + ∙ + ∙ = ( ) (2.2)
Ideally, when disruptive force F (t) is deterministic, periodic and harmonic, relation for it is:( ) = ∙ sin ∙ (2.3)
where:
m – viscoelastic supported mass;
c – viscous damping coefficient;
k – support system rigidity (elasticity constant)
a – acceleration;
v - velocity;
x - movement;
F(t) – disruptive force
F0 – disruptive force amplitude of the vibration source;
ω – its pulsation;
t – time.
If we use the notations = ̇ = ̈ ; = ̇ in equation (2.2) then it may be written:∙ ̈ + ∙ ̇ + ∙ = ( ) (2.4)
Using the folowing notations, after dividing the equation (2.4) to m:= 2 ∙ – damping factor;= – own pulsation of elastic system

and by replacing the disturbance force F(t) with relation (2.3), equation (2.4) becomes̈ + 2 ∙ ∙ ̇ + ∙ = ∙ ∙ (2.5)
The solution of (2.5) consists of two terms, one representing free vibration damped - which stops after a short
time - and another representing maintained vibration [5],= ∙ ∙ ∙ ∙ sin( ∙ − ) (2.6)

Viscoelastic material behavior can be described using mechanical designs like those in Figure 2.2, consisting of
springs, dampers and dry friction elements, unlocks when the tensile force exceeds a threshold value [8].

Figure 2.2: Complex rheological models without mass: a) The Maxwell b) The Kelvin-Voigt c) The Hooke-
Maxwell (Zener), d) The viscoelastic
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Table 2.1 describes the dynamic response and isolation grades of vibration for the linear viscoelastic systems
with mass excited from the outside with a harmonic force in both cases of damping:

- Elastomeric structural damping: =
- Viscous damping discreet: Ϛ = /(2 )

Table 2.1: The dynamic response and isolation degree of vibration for the linear viscoelastic systems with mass
excited from the outside with a harmonic force

Designation Viscoelastic system
Voigt-Kelvin

Viscoelastic system Maxwell Viscoelastic system Hooke-
Maxwell (Zener)

Damping
case

Elastomeric structural
damping

Elastomeric structural
damping

Elastomeric structural damping

Viscous damping discreet Viscous damping discreet Viscous damping discreet

Schematic
representation
of the  model

Equation of
motion

∙ ̈ + ∙ ̇ + ∙ == ∙ sin ∙ ∙ ̈ + ∙ ̇ − ̇ = ∙ ∙ ∙∙ ̇ − ̇ = ∙ ∙ ̈ + ∙ ̇ − ̇ + = ∙ ∙ ∙∙ ̇ − ̇ = ∙ ∙
Amplitude A

= ∙ 1(1 − ) + = ∙ 1 ++ (1 − ) ( , ) == ∙ +(1 − ) + ( + 1 − )= ∙ 1(1 − ) + 4Ϛ = ∙ 1 + 4Ϛ+ 4Ϛ (1 − ) ( , Ϛ) == ∙ + 4Ϛ(1 − ) + 4Ϛ ( + 1 − )
Amplitude of
the transmited
force

= 1 +(1 − 2)2 + = + (1 − ) ( , ) == + ( + 1)(1 − ) + ( + 1 − )
= 1 + 4Ϛ2 2(1 − 2)2 + 4Ϛ2 2 = 4Ϛ+ 4Ϛ (1 − ) ( , Ϛ) == + 4Ϛ ( + 1)2(1 − ) + 4Ϛ ( + 1 − )

Th
e

tra
ns

m
is

si
bi

lit
y = 1 +(1 − 2)2 + ( , ) = + (1 − ) ( , )= + ( + 1)(1 − ) + ( + 1 − )

= 1 + 4Ϛ2 2(1 − 2)2 + 4Ϛ2 2 ( , Ϛ) = 2Ϛ+ 4Ϛ (1 − ) ( , Ϛ)= 2 + 4Ϛ2 2( + 1)2(1 − 2)2 + 4Ϛ2 2( + 1 − 2)2
3. CONCLUSION

Maxwell model can simulate the behavior of a material that has an elastic response followed by a viscous flow
constant when applied at baseline t0, a force which then remains constant (figure 3.1 a).
Kelvin-Voigt model is used to model material which, at the discharge, are returning to the reference state, but not
through the same path as the load (figure 3.1 b).
This behavior, characterized by hysteresis, it is associated with a energy dissipation.



412

The Hooke-Maxwell (Zener) is rheological model of standard linear solid deformable this means that this type of
system models elastomeric materials with structural damping δ = cω / k and materials with Ϛ = /(2 ).
Viscoelastic model should be used when you know elastic properties, viscous and hardening of the material.
The model is used to characterize the behavior of glass and vitreous materials.
In this model also includes the effects of temperature variations, which enables simulation of heating or cooling

(see figure 3.1 c) [8].

Figure 3. Dynamic response of complex models

Table 3.1: Variation of amplitude A for structural damping elastomer (a) or discrete viscous damping (b) [1]
Designation Variation of amplitude A depending on and Variation of amplitude A depending on and Ϛ
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Table 3.2: Variation of transmissibility T for structural damping elastomer (a) or discrete viscous damping (b)
[1]
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