

The 40<sup>th</sup> International Conference on Mechanics of Solids, Acoustics and Vibrations & The 6th International Conference on "Advanced Composite Materials Engineering" ICMSAV2016& COMAT2016 Brasov, ROMANIA, 24-25 November 2016

# DYNAMIC RESPONSE AND ISOLATION DEGREE OF STATIONARY FORCED VIBRATION IN THE CASE OF VIBRATION SUPPORTS WITH COMPLEX VISCOELASTIC BEHAVIOR

## Gianina Cornelia Spânu ( tefan)<sup>1</sup>

<sup>1</sup> University "Dun rea de Jos", Galați , ROMÂNIA, spanugianina@yahoo.com

Abstract: Through this paper work it seeks to define the dynamic response and the isolation degree of stationary forced vibrations in the case of vibration isolators supports with the complex viscoelastic behavior. For this purpose, it will analyze the following complex viscoelastic models: the viscoelastic model Voigt-Kelvin, Maxwell viscoelastic model and Hooke - Maxwell viscoelastic model (Zener). It is considered that these systems are excited from the outside with a harmonic force. Following determination of differential equations of motion for each model and identify solutions systems of equations can be defined the dynamic response and the isolation degree of stationary forced vibrations.

Keywords: dynamic response, isolation degree, stationary forced vibration, complex viscoelastic behavior

### **1. GENERAL NOTIONS**

Stationary vibration is the oscillating motion that, throughout the considered period of time, is not interrupted. It is considered that the vibration is forced (maintained) if, from the outside, is acting on a structural system with a disruptive force to maintain motion (introduce energy in the oscillating system). The effect achieved, in this case, is contrary to the natural tendency of friction damping of the free vibration.

In the following there is provided a forced vibration classification [3]:

a) According to the damping:

- damped: viscous, dry, hysteretic and ordinary;

- without damping.

b) By the nature of disruptive force

- determinist: periodical (harmonic and ordinary), impulse and ordinary;

- random.

The dynamic response of the vibration represent the dynamic evaluation of vibration where the dynamic excitation point is the headquarters of disruptive force F(t) and the reception point is the headquarters of the transmitted force  $F_T$  [1]. The isolation degree of the transmitted vibrations is denoted by I and express the percent reduction of the vibration [1]:

I = [1 - T] 100 [%]

(1.1)

where: T - vibration transmissibility or the transmission degree of vibrations and represents the ratio between the response parameter (like physical magnitude transmitted) and the excitatory parameter (as physical input). The vibration supports with complex viscoelastic behavior are support systems which are composed of both resilient components and viscous damping elements, so the elastic properties combined with the viscous.

# 2. THE DYNAMIC RESPONSE AND THE ISOLATION DEGREE OF VIBRATION. THE CASE OF VIBRATION ISOLATORS SUPPORTS WITH THE COMPLEX VISCOELASTIC BEHAVIOR.

For exemplification considers a system with one degree of freedom of mass m, viscoelastic supported (figure 2.1).

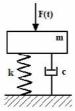



Figure 2.1: Dynamic model with one degree of freedom, viscoelastic supported [4]

| In this case (the system with one degree of freedom or single mass) forced vibration equation is:<br>$F_i + F_a + F_e \approx F(t)$ | (2.1) |
|-------------------------------------------------------------------------------------------------------------------------------------|-------|
| We have:                                                                                                                            |       |
| $F_i = m \cdot a$ -force of inertia;                                                                                                |       |
| $F_a = c \cdot v - force \ of \ dvmpping;$                                                                                          |       |
| $F_e = k \cdot x - elastic force.$                                                                                                  |       |
| By replacing relation above in equation (2.1) we get:                                                                               |       |
| $m \cdot a + c \cdot v + k \cdot x = F(t)$                                                                                          | (2.2) |
| Ideally, when disruptive force $F(t)$ is deterministic, periodic and harmonic, relation for it is:                                  | (2.2) |
| $F(t) = F_0 \cdot \sin \omega \cdot t$                                                                                              | (2.3) |
| $F(t) = F_0 \cdot \sin \omega \cdot t$<br>where:                                                                                    | (2.3) |
|                                                                                                                                     |       |
| m – viscoelastic supported mass;                                                                                                    |       |
| c – viscous damping coefficient;                                                                                                    |       |
| k – support system rigidity (elasticity constant)                                                                                   |       |
| a – acceleration;                                                                                                                   |       |
| v - velocity;                                                                                                                       |       |
| x - movement;                                                                                                                       |       |
| F(t) – disruptive force                                                                                                             |       |
| $F_0$ – disruptive force amplitude of the vibration source;                                                                         |       |
| – its pulsation;                                                                                                                    |       |
| t – time.                                                                                                                           |       |
| If we use the notations $a = \dot{v} = \ddot{x}$ ; $v = \dot{x}$ in equation (2.2) then it may be written:                          |       |
| $m \cdot \ddot{x} + c \cdot \dot{x} + k \cdot x = F(t)$                                                                             | (2.4) |
| Using the following notations, after dividing the equation (2.4) to m:                                                              |       |
| $\frac{c}{m} = 2 \cdot n - \text{damping factor;}$                                                                                  |       |
| $p = \sqrt{\frac{k}{m}}$ - own pulsation of elastic system                                                                          |       |
| and by replacing the disturbance force $F(t)$ with relation (2.3), equation (2.4) becomes                                           |       |
|                                                                                                                                     |       |

$$\ddot{x} + 2 \cdot n \cdot \dot{x} + p^2 \cdot x = \frac{F_0}{m} \cdot \sin\omega \cdot t \tag{2.5}$$

The solution of (2.5) consists of two terms, one representing free vibration damped - which stops after a short time - and another representing maintained vibration [5],

$$x_1 = \frac{F}{k} \cdot \frac{1}{\sqrt{\left(1 - \frac{\omega^2}{p^2}\right)^2 + \left(\frac{2 \cdot \eta}{p}\right)^2 \cdot \left(\frac{\omega}{p}\right)^2}} \cdot \sin(\omega \cdot t - \alpha)$$
(2.6)

Viscoelastic material behavior can be described using mechanical designs like those in Figure 2.2, consisting of springs, dampers and dry friction elements, unlocks when the tensile force exceeds a threshold value [8].

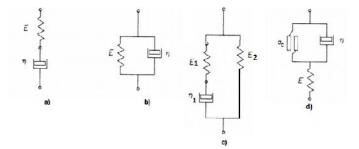



Figure 2.2: Complex rheological models without mass: a) The Maxwell b) The Kelvin-Voigt c) The Hooke-Maxwell (Zener), d) The viscoelastic

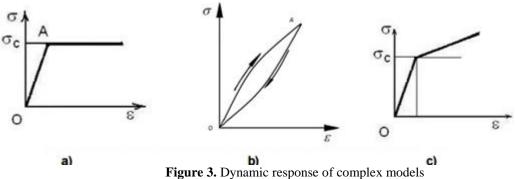
Table 2.1 describes the dynamic response and isolation grades of vibration for the linear viscoelastic systems with mass excited from the outside with a harmonic force in both cases of damping:

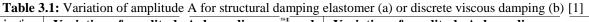
- Elastomeric structural damping:  $\delta = \frac{c\omega}{k}$
- Viscous damping discreet:  $\zeta = c/(2mp)$

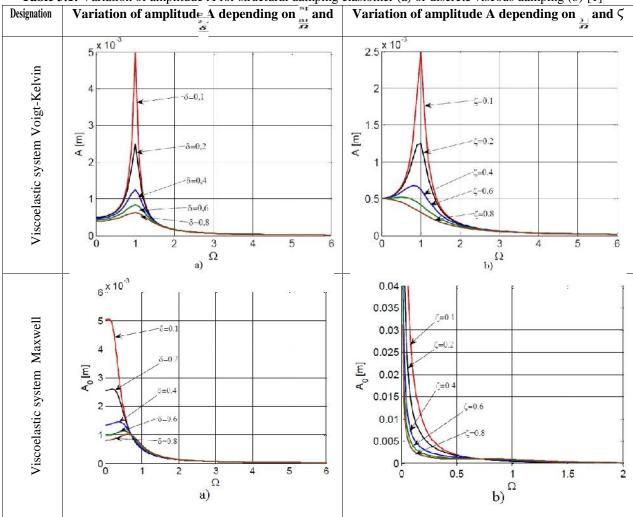
| excited from the outside with a harmonic force |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Designation                                    | Viscoelastic system                                                                                                                                                                                                                                                                                                                                                                     | Viscoelastic system Maxwell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Viscoelastic system Hooke-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                | Voigt-Kelvin                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Maxwell (Zener)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Damping                                        | Elastomeric structural                                                                                                                                                                                                                                                                                                                                                                  | Elastomeric structural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Elastomeric structural damping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| case                                           | damping                                                                                                                                                                                                                                                                                                                                                                                 | damping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                | Viscous damping discreet                                                                                                                                                                                                                                                                                                                                                                | Viscous damping discreet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Viscous damping discreet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Schematic<br>representation<br>of the model    | $F(t)$ $m \bullet \cdots \to x$ $k \downarrow f c$ $k \downarrow f c$ $F_r$                                                                                                                                                                                                                                                                                                             | F(l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $F(l)$ $m \bullet \cdots \bullet x$ $k_{2} = Nk_{1}$ $F_{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Equation of motion                             | $\frac{1}{m \cdot x + k \cdot x} = -\frac{1}{F_0 \cdot \sin \omega \cdot t}$                                                                                                                                                                                                                                                                                                            | $\begin{cases} m \cdot \hat{x} - \hat{y} \end{pmatrix} = F_0 \cdot e^{j} \frac{\omega^4}{\omega^4} \\ \frac{c \cdot (\hat{x} - \hat{y}) = k \cdot \hat{y}}{\omega^4} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\overline{\begin{cases} m \cdot \hat{x} + c \cdot (\hat{x} - \hat{y}) + k\hat{x} = F_0 \cdot e^{F \frac{\omega}{\omega}} \\ c \cdot (\hat{x} - \hat{y}) = N \cdot k \cdot \hat{y} \\ \end{array}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Amplitude A                                    | $\frac{\overline{m} = \overline{F_0} \cdot \sin \omega}{A = \overline{F_0} \cdot \sqrt{(1 - \overline{\Omega}^2)^2 + \overline{\overline{\Omega}^2}} - \overline{\overline{\overline{\Omega}^2}} = \overline{\overline{\overline{\Omega}^2}}$ $\overline{A = \overline{F_0} \cdot \sqrt{(1 - \overline{\Omega}^2)^2 + \overline{4}\overline{\zeta}^2} = \overline{\overline{\Omega}^2}$ | $\begin{array}{c} \overbrace{l}^{-1} \overbrace{k}^{-1} \overbrace{i}^{-1} \overbrace{i}^{-1} \overbrace{i}^{-1} \overbrace{i}^{-1} \overbrace{i}^{-1} \overbrace{i}^{-1} \overbrace{i}^{-1}$ | $ \begin{array}{c} \boxed{\begin{matrix} \begin{matrix} m \\ \overline{\Omega}, \overline{\delta} \\ \overline{+c} \\ \overline{+c} \\ \overline{N} \end{matrix}}_{2} = \begin{matrix} \begin{matrix} N \\ \overline{-c} \\ \overline{N} \end{matrix}}_{2} \boxed{\begin{matrix} N \\ \overline{2} (1 - \overline{\Omega}^{2})^{2} + \overline{\delta}^{2} (\overline{N} + \overline{1 - \overline{\Omega}^{2}})^{2} \\ \overline{-c} \\ \overline{-c} \\ \overline{N} \end{matrix}}_{2} \boxed{\begin{matrix} N \\ \overline{-c} \\ \overline{-c} \\ \overline{-c} \\ \overline{-c} \\ \overline{-c} \\ \overline{-c} \end{matrix}}_{2} \boxed{\begin{matrix} N \\ \overline{-c} \\ $ |  |  |
| Amplitude of<br>the transmited<br>force        | $\begin{array}{c} - & - & - & - & - & 1 \\ Q^{0} = & F^{0} \sqrt{\frac{1}{(1 - \alpha^{2})^{2} + \delta^{2}}} \\ \hline & - & - & - & - & \frac{1}{(1 - \alpha^{2})^{2} + \delta^{2}} \\ Q^{0} = & F^{0} \sqrt{\frac{1}{(1 - \alpha^{2})^{2} + 4\zeta^{2}\alpha^{2}}} \end{array}$                                                                                                      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $= F_{0} \sqrt{\frac{N^{2}}{N^{2}(1 - \frac{N^{2}}{\Omega^{2}})^{2} + \overline{\delta_{2}}(N + 1)^{2}}}_{= F_{0} \sqrt{\frac{N^{2}}{2} + \overline{\delta_{2}}(N + 1)^{2}}}_{= \frac{N^{2}}{2} - \frac{N^{2}}{2} + \overline{\delta_{2}}(N + 1)^{2}}_{= \frac{N^{2}}{2} - \frac{N^{2}}{2} + \overline{\delta_{2}}(N + 1)^{2}}_{= \frac{N^{2}}{2} - \frac{N^{2}}{2} + 4\zeta_{2}^{2} - \frac{N^{2}}{\Omega^{2}}(N + 1)^{2}}_{= \frac{N^{2}}{2} + 4\zeta_{2}^{2} - \frac{N^{2}}{\Omega^{2}}(N + 1)^{2}}_{= \frac{N^{2}}{2} + 4\zeta_{2}^{2} - \frac{N^{2}}{\Omega^{2}}(N + 1)^{2}}_{= \frac{N^{2}}{2} + \frac{N^{2}}{2} + 4\zeta_{2}^{2} - \frac{N^{2}}{\Omega^{2}}(N + 1)^{2}}_{= \frac{N^{2}}{2} + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| The<br>transmissibility                        | $= F_0 \sqrt{\frac{1}{(1 - \alpha^2)^2 + 4}}$ $T = \sqrt{\frac{1}{(1 - \alpha^2)^2 + \delta^2}}$ $T = \sqrt{\frac{1}{(1 - \alpha^2)^2 + \delta^2}}$ $T = \sqrt{\frac{1}{(1 - \alpha^2)^2 + 4}}$                                                                                                                                                                                         | $\frac{P_{0} = F_{0}}{T(\Omega, \delta)} = \frac{1}{\sqrt{\Omega^{4}} + \frac{1}{\delta^{2}(1 - \frac{1}{\Omega^{2}})^{2}}}$ $\frac{1}{\sqrt{\Omega^{4}} + \frac{1}{\delta^{2}(1 - \frac{1}{\Omega^{2}})^{2}}}$ $\frac{1}{T(\Omega, \zeta)} = \frac{1}{\sqrt{\Omega^{4}} + 4\zeta^{2}\overline{\zeta^{2}}} - \frac{1}{\overline{\Omega^{2}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $= \sqrt{\frac{N^2}{7 \epsilon \Omega}} \frac{\sqrt{N^2 + \delta^2 (N+1)^2}}{\sqrt{N^2 (1 - \Omega^2)^2 + \delta^2 (N+1)^2}}$<br>= $\sqrt{\frac{N^2 + \delta^2 (N+1)^2}{\sqrt{N^2 (1 - \Omega^2)^2 + \delta^2 (N+1)^2}}}$<br>= $\sqrt{\frac{N^2 - \delta^2 (N+1)^2}{\sqrt{N^2 - \delta^2 (N+1)^2}}}$<br>= $\sqrt{\frac{N^2 - \delta^2 (N+1)^2}{\sqrt{N^2 - \delta^2 (N+1)^2}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |

**Table 2.1:** The dynamic response and isolation degree of vibration for the linear viscoelastic systems with mass excited from the outside with a harmonic force

## **3. CONCLUSION**


Maxwell model can simulate the behavior of a material that has an elastic response followed by a viscous flow constant when applied at baseline t0, a force which then remains constant (figure 3.1 a).


Kelvin-Voigt model is used to model material which, at the discharge, are returning to the reference state, but not through the same path as the load (figure 3.1 b).


This behavior, characterized by hysteresis, it is associated with a energy dissipation.

The Hooke-Maxwell (Zener) is rheological model of standard linear solid deformable this means that this type of system models elastomeric materials with structural damping = c / k and materials with  $\zeta = c/(2mp)$ . Viscoelastic model should be used when you know elastic properties, viscous and hardening of the material. The model is used to characterize the behavior of glass and vitreous materials.

In this model also includes the effects of temperature variations, which enables simulation of heating or cooling (see figure 3.1 c) [8].







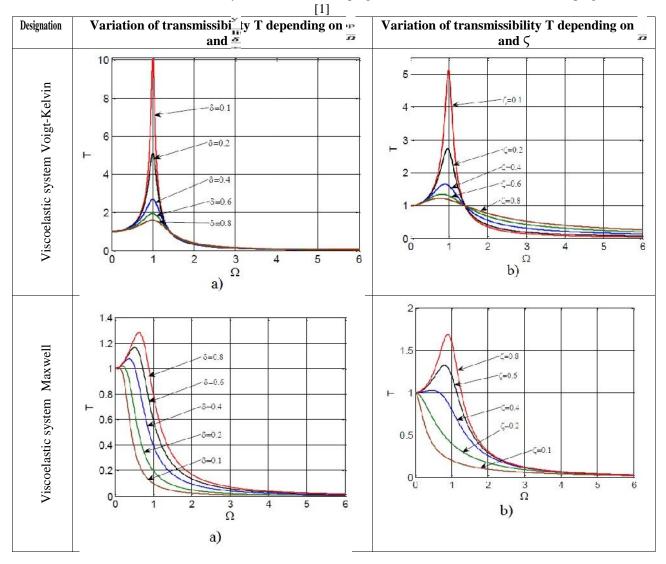



Table 3.2: Variation of transmissibility T for structural damping elastomer (a) or discrete viscous damping (b)

#### REFERENCES

- [1] Bratu, Polidor. Analiza structurilor elastice. Comportarea la acțiuni statice și dinamice, Editura IMPULS, Bucure ti, 2011
- [2] Bratu, Polidor. Vibrații Mecanice. Teorie. Aplicații Tehnice. Editura IMPULS, București, 1998
- [3] Buzdugan Gh., Fetcu L., Rade M., Vibrații mecanice. Editura Didactic i Pedagogic, Bucure ti, 1982
- [4] Ene Gheorghe, Pavel Cristian. Introducere în tehnica izol rii vibra iilor i a zgomotului, Editura Matrix Rom, Bucure ti, 2012
- [5] Buzdugan Gh. M surarea vibrațiilor mecanice. Editura Tehnic , Bucure ti, 1964
- [6] Bratu, Polidor. Curs de Vibrații Neliniare și Aleatorii
- [7] Bratu, Polidor Curs de Analiza dinamic a masinilor cu acțiune vibrant i prin oc
- [8] http://www.resist.pub.ro/Cursuri\_master/CNS/Cap3\_IV.pdf