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Abstract:  Distributions of the transformed compliances and rigidities in case of [45] unidirectional glass fibers-reinforced composite laminae versus the variation of their fibers disposal angle are computed and plotted. The basic elasticity constants of an epoxy/glass fibers unidirectional reinforced lamina with 40% fibers volume fraction, being in a stress plane state has been also determined. An [0] epoxy/boron fibers unidirectional reinforced lamina with 60% fibers volume fraction subjected to biaxial stresses σxx and σyy has been also considered in the computing model. Another lamina taken into consideration in this simulation process is a unidirectional [-45] epoxy/boron fibers-reinforced lamina with 60% fibers volume fraction subjected to biaxial stresses σxx and σyy to compute the lamina’s strains εxx, εyy and γxy. This computing model put into evidence the fact that although the loading of y-axis direction is half of that on x-axis direction, the εyy strain is eight times greater than that on x-axis direction which means that the tensile strength transverse to the fibers direction is very low in case of the [0] epoxy/boron lamina. Although the tangential stress τxy = 0, the biaxial stress field causes a γxy strain in case of a [-45] epoxy/boron lamina.
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1. INTRODUCTION

Fibers-reinforced polymer matrix composites belong to the class of heterogeneous and anisotropic materials, so their mechanics is much more complex than that of conventional materials. The basic element of a layered composite structure is represented by an individual layer called lamina reinforced with continuous unidirectional fibers inserted into a resin system called matrix. Basic assumptions in the description of the interaction between fibers and matrix in a lamina subjected to tensile loads, are [1], [2]:

· Both fibers and matrix behave as linear elastic materials;

· Initially, the lamina does not present residual stresses;

· The loads are applied parallel or perpendicular to the fibers direction;

· The matrix does not present voids and failures;

· The bond between fibers and matrix is perfect;

· The fibers are uniform distributed in matrix.

In a general case, the plane loading of a lamina is formed by three components that have been connected to the main directions in material [3], [4], [5-15]:
· The longitudinal loading, in which normal stress σ║ is parallel to fibers direction;

· The transverse loading, in which normal stress σ┴ acts perpendicular to fibers direction;

· The shear loading, determined by shear stresses τ# that act both parallel and perpendicular to fibers direction.

Three loadings can be defined on a representative volume element of the lamina. From a macroscopic point of view a lamina can be imagined as a continuous anisotropic homogeneous element in which the infinitely long fibers are inserted into the matrix. The lamina’s cross section is not homogeneous, so the computational approach is carried out with medium stresses. Normal stresses σ║ and σ┴ cause the strains ε║ and ε┴ on the respective loading directions. In the same time, normal stresses σ║ and σ┴ cause also a shrinkage on the lamina’s thickness direction, shrinkage that is often irrelevant in case of thin-walled structural elements [16-27].
2. COMPUTING EXAMPLES
2.1. Case of a [45] unidirectional glass fibers-reinforced lamina
A unidirectional [45] glass fibers-reinforced composite lamina being in a stress plane state is considered. The basic elasticity constants of this kind of lamina are: E║ = 47000 MPa; E┴ = 14800 MPa; υ┴║ = 0.3; G║┴ = 5700 MPa; and α = 0° – 90°. It is required to compute the transformed compliances and rigidities versus the variation of fibers’ disposal angle. Distributions of the transformed compliances are presented in Figs. 1–2. Distributions of the transformed rigidities r11, r22, r33, r12, r13 and r23 are presented in Figs. 3–4.
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Figure 1:  Distributions of transformed compliances c11, c22 and c33
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Figure 2:  Distributions of transformed compliances c12, c13 and c23
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Figure 3:  Distributions of transformed rigidities r11, r22 and r33
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Figure 4:  Distributions of transformed rigidities r12, r13 and r23 of [45] unidirectional glass fibers-reinforced lamina

2.2. Case of a 40% glass fibers volume fraction unidirectional reinforced lamina

An epoxy/glass fibers unidirectional reinforced lamina with 40% fibers volume fraction, being in a stress plane state has been considered. The input data regarding fibers and matrix properties are: EF = 73 GPa; EM = 3.6 GPa; υF = 0.25; υM = 0.35; the fibers volume fraction varies between 10% and 70%. The distributions of basic elasticity constants versus the fibers volume fraction for a unidirectional glass fibers-epoxy reinforced lamina are presented in Figs. 5–6.
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Figure 5:  Basic elasticity constants E║, E┴ and G║┴ of an epoxy/glass fibers unidirectional reinforced lamina
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Figure 6:  Poisson’s ratios ν┴║ and ν║┴ of an epoxy/glass fibers unidirectional reinforced lamina

2.3. Case of an [0] epoxy/boron unidirectional fibers reinforced lamina subjected to biaxial stresses
An [0] epoxy/boron fibers unidirectional reinforced lamina with 60% fibers volume fraction subjected to biaxial stresses σxx and σyy has been considered. The aim is to compute the lamina’s strains εxx and εyy. Following input data has been used: EF = 420 GPa; EM = 3.6 GPa; νF = 0.1; νM = 0.35; φ = 60%; α = 0˚; σxx = 1 GPa; σyy = 0.5 GPa. Stresses and strains are presented in Fig. 7.
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Figure 7:  Stresses and strains in an [0] epoxy/boron fibers unidirectional reinforced lamina

2.4. Case of an [-45] epoxy/boron unidirectional fibers reinforced lamina subjected to biaxial stresses
An [-45] epoxy/boron fibers unidirectional reinforced lamina with 60% fibers volume fraction subjected to biaxial stresses σxx and σyy has been considered. The task is to compute the lamina’s strains εxx, εyy and γxy. Following input data has been used: EF = 420 GPa; EM = 3.6 GPa; νF = 0.1; νM = 0.35; φ = 60%; α = -45˚; σxx = 1 GPa; σyy = 0.5 GPa. Fig. 8 presents the strains of an [-45] epoxy/boron fibers unidirectional reinforced lamina with 60% fibers volume fraction subjected to biaxial stresses σxx and σyy.
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Figure 8:  Stresses and strains in an [-45] epoxy/boron fibers unidirectional reinforced lamina

3. CONCLUSION
It is interesting to notice that although the loading of y-axis direction is half of that on x-axis direction, the εyy strain is eight times greater than that on x-axis direction which means that the lamina’s tensile strength transverse to the fibers direction is very low in case of an [0] epoxy/boron fibers unidirectional reinforced lamina (Fig. 7). Although the tangential stress τxy = 0, the biaxial stress field causes a γxy strain in case of an [-45] epoxy/boron unidirectional fibers reinforced lamina subjected to biaxial stresses (Fig. 8).
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