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J-INTEGRAL VARIATION FOR A LAYERED COMPOSITE PLATE
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Abstract: In this paper the FEM approach of determining the J-integral for a cracked plate, using the Abaqus software, is
presented. The plate was modelled as a shell, with a central cut-out and a small crack and meshed with quadrilateral and
triangular elements. Only half of the plate was modeled with symmetry conditions for the other half, a fixed end and a
loading at the other end.
A static analysis was run with the added option to calculate the J-integral for the defined crack. Since J also can be
considered as the energy flow into the crack tip the time variation of J-integral will be presented as a diagram with the
coordinates: displacement energy release rate for the tip of the crack – time.
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1. INTRODUCTION

Because of their mechanical properties, composite materials have applications in various industries, such as
aircraft, naval, automotive, military industries, the biomedical domain etc. One important aspect that needs to be
taken into consideration for composites integrity and their fatigue life is the evolution of the cracks that appear
during loading. All aspects and methods useful for studies are developed by fracture mechanics concepts [1].
In 1968, J. R. Rice introduced the concept of J-integral [2], which can be used to predict the evolution of a crack.
Initially the J-integral could be used for 2D problems and, in time, researchers improved this method so it can
also be used for 3D problems [3, 4, 5] and orthotropic composites [6, 7].
Many applications of numerical methods oriented to study the dynamic fracture problems have used the finite
difference method developed by Chen and Wilkens [8].
Nishioka is the researcher who focused on evaluation of crack-tip parameters, by using J-integral and stress
intensity factors in fracture problems, based on finite element analysis [9, 10, 11, 12].
FEA is the method that can evaluate fracture parameters by using various methods such as crack closure. On the
other hand, this method offers difficulties in the area of coping with crack propagation, especially for the case of
propagation in arbitrary directions [12]. The problem of FEA is difficult in the case of problems with large
deformations or rotations. For these cases the finite element mesh could have big distortions and thus it is
necessary a re-meshing, causing problems in calculation efficiency.

2. METHODOLOGY

2.1. Analysis description

A plate with two layers made from an epoxy-glass composite material is analyzed in this paper. Three
orientation cases for the layers are considered: I. 0o/0o; II. 0o/90o; III. 45o/-45o. The plate’s dimensions are 3000
mm X 2000 mm, with a central circular cut-out with the radius of 500 mm and a crack with a length of 200 mm
(figure 1), but only half of the plate with the crack (and with symmetry conditions) was modeled and analyzed.
For comparing the results half of a plate with a central crack was also modeled and analyzed with the same
conditions.
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Figure 1: Plate geometry with a crack (dimensions in mm)

The plate was subjected to the boundary conditions: the left edge of the plate was fixed and symmetry conditions
were applied on the bottom edge, because only the top part of the plate was modeled.  A pressure was distributed
uniformly on the right edge of the plate, with values between 100 and 500 MPa for five analysis cases (figure 2).

Figure 2: The boundary conditions for the plate with a central cut-out with the seam of the crack highlighted

The approximate global size of the applied seeded mesh was 50 mm with quadrilateral elements, except in the
vicinity of the crack’s tip where the applied mesh was finer with quadrilateral and triangular elements (figures 3
and 4).

Figure 3: Meshed plate with a central crack
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Figure 4: Meshed plate with a central cut-out and a crack

2.2. FEM method

A static analysis was run with an added option to calculate the first and second stress intensity factors and the J-
integral. The von Mises stress for a tension pressure case for the plate with the layers oriented at 0o/0o and with a
central cut-out is presented in the figure 5. The figures 6, 7 and 8 contain the variations of the stress intensity
factors and of the J-integral in a time interval between 0 and 1 second. All FEM results can be found in table 1.

Figure 5: Von Mises stress [MPa] for the plate (layers oriented at 0o/0o) with a tension pressure of 100MPa

Figure 6: First stress intensity factor (KI) [MPa·√m] variation for the plate (layers oriented at 0o/0o) with a
tension pressure of 100MPa
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Figure 7: J-integral [MPa·m] variation for the plate (layers oriented at 0o/0o) with a tension pressure of 100MPa

3. RESULTS AND DISCUSSIONS

Two plate geometry cases have been modeled: one with only a crack and one with a circular cut-out and a crack
– with three cases of layer orientations (0o/0o, 0o/90o, 45o/-45o) and subjected to five pressure loading cases (100,
200, 300, 400 and 500 MPa).
The results obtained from Abaqus are presented in the tables bellow. To better compare the results for the
maximum von Mises stress and J-integral two diagrams were also prepared (figures 9 and 10).

Table 1: Maximum von Mises Stress, the stress intensity factors and the J-integral calculated by using the
Abaqus software for the plate with the layers oriented at 0o/0o (with/without a central cut-out)

Pressure
[MPa]

Maximum von Mises
Stress [MPa]

KI [MPa·√m] KII [MPa·√m] J-integral [MPa·m]

Plate
without a
cut-out

Plate
with a
cut-out

Plate
without a
cut-out

Plate
with a
cut-out

Plate
without a
cut-out

Plate
with a
cut-out

Plate
without a
cut-out

Plate
with a
cut-out

100 151.576 474.662 635.22 2032.82 1.9415 146.313 15.9417 165.052
200 303.151 949.324 1270.44 4065.64 3.883 292.627 63.7667 660.207
300 454.727 1423.985 1905.66 6098.45 5.8245 438.94 143.475 1485.47
400 606.302 1898.647 2540.88 8131.27 7.766 585.254 255.067 2640.83
500 757.878 2373.309 3176.1 10164.1 9.7075 731.567 398.542 4126.29

Table 2: Maximum von Mises Stress, the stress intensity factors and the J-integral calculated by using the
Abaqus software for the plate with the layers oriented at 0o/90o (with/without a central cut-out)

Pressure
[MPa]

Maximum von Mises
Stress [MPa]

KI [MPa·√m] KII [MPa·√m] J-integral [MPa·m]

Plate
without a
cut-out

Plate
with a
cut-out

Plate
without a
cut-out

Plate
with a
cut-out

Plate
without a
cut-out

Plate
with a
cut-out

Plate
without a
cut-out

Plate
with a
cut-out

100 83.425 359.283 702.128 2206.2 0.538548 44.1357 19.4765 192.457
200 166.85 718.565 1404.26 4412.39 1.0771 88.2713 77.9058 769.828
300 250.275 1077.848 2106.29 6618.59 1.61564 132.407 175.288 1732.11
400 333.7 1437.131 2808.51 8824.79 2.15419 176.543 311.623 3079.31
500 417.125 1796.413 3510.64 11031 2.69274 220.678 486.911 4811.42
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Table 3: Maximum von Mises Stress, the stress intensity factors and the J-integral calculated by using the
Abaqus software for the plate with the layers oriented at 45o/-45o (with/without a central cut-out)

Pressure
[MPa]

Maximum Von
Mises Stress [MPa]

KI [MPa·√m] KII [MPa·√m] J-integral [MPa·m]

Plate
without a
cut-out

Plate
with a
cut-out

Plate
without a
cut-out

Plate
with a
cut-out

Plate
without a
cut-out

Plate
with a
cut-out

Plate
without a
cut-out

Plate
with a
cut-out

100 187.223 663.789 655.669 2278.07 -92.3589 -304.2 24.3498 294.983
200 374.445 1327.577 1311.34 4556.14 -184.718 -608.4 97.3994 1179.93
300 561.668 1991.366 1967.01 6834.2 -277.077 -912.6 219.149 2654.84
400 748.891 2655.154 2622.67 9112.27 -369.436 -1216.8 389.598 4719.72
500 936.113 3318.943 3278.34 11390.3 -461.794 -1521 608.746 7374.56

Figure 8: The variation of the maximum von Mises stresses for the analyzed cases

Figure 9: The variation of the J-integral values for the analyzed cases

0

500

1000

1500

2000

2500

3000

3500

100 200 300 400 500

M
ax

im
um

 V
on

 M
iss

es
 S

tr
es

s 
[M

Pa
]

Pressure [MPa]

Plate without a cut-out with
layers at 0/0

Plate with a cut-out with
layers at 0/0

Plate without a cut-out with
layers at 0/90

Plate with a cut-out with
layers at 0/90

Plate without a cut-out with
layers at 45/-45

Plate with a cut-out with
layers at 45/-45

0

1000

2000

3000

4000

5000

6000

7000

8000

100 200 300 400 500

J-i
nt

eg
ra

l [
M

Pa
·m

]

Pressure [MPa]

Plate without a cut-out with
layers at 0/0

Plate with a cut-out with
layers at 0/0

Plate without a cut-out with
layers at 0/90

Plate with a cut-out with
layers at 0/90

Plate without a cut-out with
layers at 45/-45

Plate with a cut-out with
layers at 45/-45



122

4. CONCLUSIONS

In this paper an epoxy-glass composite plate with two layers (with and without a central cut-out) and a central
crack has been analyzed to estimate the variation of the J-integral during the loading with a pressure distributed
uniformly on the right edge of the plate.
By increasing the applied pressure, it can be observed that the von Mises stresses have a linear growth, while the
J-integral values have an exponential growth. As it is observed, the plate with a cut-out and the fibers oriented at
45o/-45o has the weakest properties in this case, the plate without a cut-out and with the fibers oriented at 0o/90o

has the best stress resistance (figure 8) and the plate without a cut-out and with the fibers oriented at 0o/0o has the
lowest J-integral value (figure 9).
The reason for the discrepancy existing between the results may be the modeling approach of the plates that can
introduce errors during interlaminar studies [13, 14]. Future work should be aimed at the fracture problems
including crack propagation.
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