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Abstract: Vibrations of heterogeneous curved beams have recently been investigated by the authors of the present paper. 

Various papers deal with, among others, the issue what effect the central load has on the vibrations of curved beams made of 

heterogeneous material with distinct supports. To find numerical solution, the authors determined the Green function 

matrices for pre-loaded beams. Then they reduced the eigenvalue problems, which yield the eigenfrequencies as a function of 

the load, to eigenvalue problems governed by a system of Fredholm integral equations. In this paper the most important 

properties of the model and the governing differential equations are provided for elastically restrained pre-loaded beams. 

Then the question how functionally graded material distribution can affect the eigenfrequencies is replied through examples. 
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1. INTRODUCTION  
  

Curved beams are widely used in engineering applications – let us consider, for instance, arch bridges or roof 

structures. Research concerning the mechanical behavior of such structural elements began in the 19
th

 century. 

The free vibrations of curved beams have been under extensive investigation – see, e.g.: [1,2] for more details. 

Considering the vibrations of pre-loaded circular beams, the number of the available articles is much less than 

for the free vibrations. Wasserman [2], for example, investigates the load-frequency relationship for spring 

supported inextensible arches. The load can be dead or follower. Here, similarly as in [3], the Galerkin method 

was presented as an effective way to get solutions. Chidamparam and Leissa [3] investigate the vibrations of 

pinned-pinned and fixed-fixed pre-stressed homogeneous circular arches under distributed loads. The 

extensibility of the centerline is taken into account. In this paper we would like to discuss shortly a model which 

can be used to get the free and loaded vibrations of rotationally restrained nonhomogeneous circular beams. 

Through simple numerical examples, we show how functionally graded material (FGM) distribution can change 

the eigenfrequencies compared to homogeneous material distribution. 

 

2. THE MECHANICAL MODEL 

 

Here, based on [4] we overview the most important properties and assumptions used for the mechanical model. 

We have developed a 1D beam model to investigate the vibrations of the beam. The curvilinear coordinate 

system (  ,,s ) is attached to the ( E weighted) centerline as shown in Figure 1. The radius of curvature o  

is constant and, moreover, the cross-sectional geometry and the material distribution are uniform. However, the 

material composition and thus the material parameters are functions of the cross-sectional coordinates ,  and 

the axis   is a symmetry axis both for the geometry and for the material distribution. Therefore, it is possible to 

model homogeneous, functionally graded (FG) and even multi-layered beams, considering each material 

component to be linearly elastic and isotropic. At the points of the centerline, the E -weighted first moment of 

the cross-section with respect to the axis  is zero:  

 .0dA),(EQ
A

e               (1) 

We consider the validity of the Euler-Bernoulli beam theory for the investigations, i.e., the cross-sections rotate 

as if they were rigid bodies and remain perpendicular to the deformed centerline. Let ou , ow  and   be the  
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Figure 1: The beam centerline with loading and supports 

 

tangential, radial displacements and the semi-vertex angle of the beam. Since the radius is constant the 

coordinate line s  and the angle coordinate   are related to each other via equation  os . The axial strain 

o  and the rigid body rotation o  on the centerline can be expressed [5] in terms of the displacements as 
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The principle of virtual work for the beam shown in Figure 1 yields equilibrium equations   
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which should be fulfilled by the axial force N  and the bending moment M . Here tf  and nf  denote the intensity 

of the distributed loads in the tangential and normal directions (   eef nt ff ). 

Recalling Hooke's law [1], the relations between the strains and inner forces become  
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eA  is the E -weighted area of the cross-section, eI  is the E -weighted moment of inertia with respect to the 

bending axis while m  is a geometry-heterogeneity parameter – the effect of the material distribution is 

incorporated into the model through the latter one. For practical reasons, we introduce dimensionless 

displacements and a notational convention for the derivatives taken with respect to the angle coordinate:  
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If we plug equations (2) and (4) into (3) and perform some manipulations – these are detailed in [5] – we get 
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Within the framework of the linear theory, we can freely neglect the effect of the deformations on the 

equilibrium (i.e., 0o   ).  

In the sequel, the increments (which occur because of the vibratory nature of the problem) in the typical 

quantities are identified by a subscript b . Each physical quantity can be given in a form similar to the total 

tangential displacement which is equal to the sum obo uu  . Here ou  is the static displacement caused by the 

pre-load, and obu  is the dynamic displacement increment. It turns out [4] that the increments in the axial strain 

and in the rotation have a similar structure to equations (2):  
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The principle of virtual work for the increments yields the equilibrium equations – see [2] for details: 
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where tbf  and nbf  are forces of inertia:  
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in which A  as the area of the cross-section and a  as the average density of the cross-section. The increments 

of the inner forces can be given in terms of the displacement increments via Hooke's law: 
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Substituting (8) and (11) into (9), we get the equilibrium equations in the following form:  
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As regards the details we refer the reader to [2]. For harmonic vibrations the amplitudes obÛ  and obŴ  should 

satisfy the following differential equations:  

 

  

  ,
I

A;
Ŵ

Û
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where   and   denote the eigenvalues and eigenfrequencies.  

This differential equation can be rewritten into the following form 

    ryK  o,m,            (13) 

which, in fact, describes the behavior of the pre-loaded beam if the beam is subjected to a further dimensionless 

load r . 

For rotationally restrained beams differential equations (12) or (13) are associated with the following boundary 

conditions:  
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where   eo I/kK  is a dimensionless spring constant given in terms of the spring constant k . Equations 

(12) and (14) determine an eigenvalue problem. The i -th eigenfrequency i  depends on the heterogeneity 

parameters m , a  and also on the magnitude and the direction of the concentrated force P . The effect of the 

latter one is accounted through the axial strain it causes: ),m,(oo   P  in which P  is a dimensionless load: 

)I2/(P e
2

o  P . 

It can be shown [4] that the Green function matrix can be constructed in closed-form for the above problem. 

With the Green function matrix, the eigenvalue problem can be transformed to a Fredholm integral equation 

system. Its kernel is the Green function matrix. Solution to the integral equations is possible with numerical 

methods as shown in [5]. 

 

3. NUMERICAL EXAMPLE ON THE FREE VIBRATIONS 

 

In this section we illustrate how material inhomogeneity can affect the eigenfrequencies of pinned-pinned 

members, i.e., 0K  and 0P  . We consider a functionally graded material composition – see Figure 2, 

where Ce is the point where the centerline intersects the cross-section. The material properties, i. e., Young's  
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Figure 2: A functionally graded rectangular cross-section 

 

modulus )(EE   and the density   are distributed along the axis z  (or  ) of the rectangular cross-section 

according to the power law rules: 
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Here the subscripts c  and m  refer to the ceramic and metal constituents of the material and the exhibitor Rk . 

In this example we choose an aluminium oxide 32OAl  and aluminium constitution, therefore  
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Figure 3: Variation of Young's modulus over the height of the cross-section 

 

The value of the index k  will be increased gradually from 0  by 5.0  until 5 . If 0k  , the cross-section is 

homogeneous aluminium and the typical quantities will be distinguished by a subscript 
hom

. Otherwise, the 

subscript 
het

 is used. (When k  the whole cross-section is 32OAl  with a thin aluminium layer at bz  .) 

In Figure 3, we show the distribution of E along the height of the cross-section according to the power law. Next, 

we plot how the parameter m changes because of the inhomogeneity. Based on (4)6 we have 
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Recalling formulae (4)4-(4)5 and the data (16), the typical physical quantities we need to tackle the current 

problem can all be calculated. Therefore, the quotient (17) in terms of k  and b/o  is shown in Figure 4. 

 

 
 

Figure 4: The quotient (17) against k  and b/o  

 

Now let us see how inhomogeneity can affect the first four natural frequencies of pinned-pinned circular beams. 

We choose 2001m hom  and 10b/o   , therefore the maximum of the quotient homhet m/m  is 196.1  at 

2k  . The selected semi-vertex angles are )6.1;8.0;4.0;2.0( . The computational results are plotted in 

Figure 5 for i=1,2,3,4 – i.e., for the first four natural frequencies. 

 

Generally we can conclude that there are significant differences because of the inhomogeneity. When 2.0 , 

all four frequencies change in a similar way and in the order from the first one to the fourth one. Interestingly, 

when 4.0 , only the second, third and fourth frequencies change almost exactly the same way. Increasing the 

semi-vertex angle to 8.0 , we again experience a new tendency: the even frequencies are affected mostly by the 

material composition. On the bottom right diagram the curves coincide with a good accuracy. 

We have also carried out some simple finite element computations to verify our model. We have used the 

following data: mm10ba  , 30b/o  , and the material was aluminium ( 0k   - see the material properties 

beforehand). In the commercial finite element software Abaqus CAE 6.7 we have combined the Static, General 

and the Linear Perturbation, Frequency steps with 22B  beam elements. Some simple comparisons for 

1;5.0;2.0  are provided in Table 1. The table indicates that the models coincide really well for unloaded 

beams. 

 

 

Table 1: Comparisons with finite element results 

 

  Abaqus1

modelNew  1




 

 Abaqus2

modelNew  2




 

 Abaqus3

modelNew  3




 

 Abaqus4

modelNew  4




 

0.2 1.001 1.037 1.079 1.213 

0.5 1.006 1.010 1.004 1.025 

1 1.002 1.004 0.996 1.011 
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Figure 5: The change in the frequencies due to the inhomogeneity 

 

 

4. CONCLUSIONS 

 

We have presented a model to clarify the vibratory behavior of circular beams pre-loaded by central load (a 

vertical force at the crown point). The model is based on the Euler-Bernoulli beam theory and is applicable for 

heterogeneous materials. The beam-end supports are rotationally restrained pins, which are modeled by linear 

volute springs having the same spring constant. The effect of the pre-load is incorporated into the model via the 

strain it causes. An eigenvalue problem was established by using the principle of virtual work. This eigenvalue 

problem can be transformed to an eigenvalue problem governed by Fredholm integral equations similarly as in 

[4]. The Green function matrix can also be given in a closed form both for compressive load and for tensile load. 

Through simple numerical examples, we showed that functionally graded material distribution can significantly 

change the eigenfrequencies compared to homogeneous material distribution. 
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