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Abstract:  The aim of this contribution is to provide a numerical optimization method solution for passive control of 
structures by damped vibration absorber (DVA). We will use a generalized Den Hartog’s model that includes damping in 
both, the main structure and the absorber. To develop a numerical solution, Den Hartog’s method will be adapted and 
implemented in MATLAB Optimization Toolbox.  
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1. INTRODUCTION   
 
The dynamic vibration absorber (DVA) or tuned-mass damper (TMD) is a widely used passive vibration control 
device. Watts  [1] in 1883 and Frahm  [2] in 1909 reported on the  first use of a dynamic vibration absorber.  The 
tuned mass damper (TMD) system, is a passive energy absorbing device to reduce undesirable vibrations. Den 
Hartog’s model consisting of a translational mass, translational spring and translational viscous damper attached 
to a vibrating structure Figure 1. 
Most of the researchers agreed that the performance of TMDs is sensitive to the accuracy of tuning  the natural 
frequency of the TMD to the natural frequency of the structure. Den Hartog [4] has derived the formula for the 
optimum values of the TMD parameters for an undamped SDOF structure 
subjected to a harmonic excitation.  The key design parameters of a damped DVA are its tuning parameter and 
damping ratio. The first mathematical theory on the damped DVA was presented by Ormondroyd and Den 
Hartog [3]. In [4], Den Hartog first tackled the optimum solution of a damped DVA that is attached to a classical 
primary system, i.e., a system free of damping. His study utilized the feature of ‘‘fixed-point’’ frequencies, i.e., 
frequencies at which the response amplitude of the primary mass is independent of the absorber damping. Based 
on the ‘‘fixed-points’’ theory, Den Hartog found the optimum tuning parameter and defined the optimality for 
the optimum absorber damping. In the following treatment such a model will be referred to as the classic system. 
Because of  its elegance and historical Importance, the design procedure proposed by Den Hartog is reported by 
the vast majority of textbooks on mechanical vibrations. 
A real system possesses a certain degree of damping. Figure 1 b,  shows a damped primary system attached by a 
damped DVA. When a primary system is damped, the useful ‘‘fixed-points’’ feature is lost. Randall et al. [6] 
considered the more realistic situation of viscous damping between the two masses. They have shown that the 
optimal parameters for the damped linear system differ significantly from those obtained for the classic system. 
A number of studies have focused on the numerical solutions. These include a numerical optimization scheme 
proposed by Randall et al. [5], an optimal design of linear and non-linear vibration absorbers using nonlinear 
programming techniques by Soom [6], and an optimum design using a frequency locus method by Thompson 
[7]. Pennestri [8] used the min-max Chebyshev’s criterion to seek the optimum solutions. 
In the present work, the Den Hartog optimization procedure for the DVA parameters with harmonic loading 
applied to an undamped SDOF structure is extended to consider the damping of the main structure. The 
minimization of the maximum displacement of the primary mass is usually set as an objective functions. Thus, 
when there is viscous damping on both masses, the design problem can be formulated as follows. Given a 
primary mass m1, connected to the ground with a spring, dashpot element and subjected to the force F0 sin ωt, 
compute the values of secondary mass m2 stiffness k2 and viscous damping c2 such that the frequency response 
curve of the main mass has two equal maximum amplitudes. Considering the requirements for the shape of such 
a response curve, it seems appropriate to solve the present design problem by use of the MATLAB Optimization 
Toolbox . The resulting systems of non-linear equations will be solved numerically. 
  
 
2. MATHEMATICAL MODELS 
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Figure 1 shows the models used in this paper. The structure consist in a SDOF with properties m1, k1 and c1. A  
tuned mass damper (TMD) systems with properties m2, k2 and c2 is attached to structure. 
The resulting system is two degrees of freedom system. This model is similar to the Den Hartog Model except 
that Den Hartog neglected the structure damping (i.e. c1=0) in his study. 
The motion of the two-degree-of-freedom system is described by a frequency analysis. The structure is subjeted 

to harmonic force 0
j tF( t ) F e    with angular frequency ω.  

                    
 

Model  Den Hartog   Model                 Model  Generalized Den Hartog Model 
 

Figure 1: Dynamic dampers models for SDOF systems 

Displacement amplitude vector is  1 2
T

x x ,x . The equations of motion are 
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The response x1 of the structural mass is obtained from (4) 
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The magnitude of the frequency response function is given by 
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The natural frequencies of the undamped two-degree-of-freedom system is obtained by setting 1 2 0    and 

finding the positive solutions of    0q j  . 

So, from (7) is obtain characteristic equations 
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and solutions, natural frequencies, 
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3. OPTIMIZATION METHOD 
 
Many methods of optimization have been developed to opportunely design this vibration control technique. In 
the classical textbook on mechanical vibrations, Den Hertzog (1940) pointed out a remarkable feature: for any 
fixed values of ωr  and mr, curves  1 1X F k  intersect in two points P and Q (named “invariant points“), as 

shown in Fig. 2, independently of the value of ς. These points are situated close enough to the peaks of the 
frequency-amplitude curve. Den Hartog suggested to choose the parameter ωr  to equalize ordinates of P and Q. 
Secondly, ς was taken to satisfy the condition of “almost horizontal” tangents in the invariant points. Thus the 
values 
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where obtained. 
This approach does not fit in the case when the main body is damped itself [10]. So, in such cases, one have to 
rely upon numerical methods for optimization. However, when a damped DVA with a small mass ratio is 
attached to lightly or moderately damped primary systems, the normalized amplitude curves roughly join at two 
points. When the primary system damping ratio approaches zero, these two points converge to the ‘‘fixed-points 
P and Q, respectively. Therefore it is justified to assume that the ‘‘fixed-point’’ theory also approximately holds 
even for the case when a damped DVA is attached to a lightly or moderately damped primary system. Based on 
this assumption, we derive an approximate 
solution for the optimum tuning parameter for the generalized damped model, Fig.1. 
The objective is to determine the value of parameters for absorber such that the amplitude of the primary system 
with respect to the frequency is minimal. In this paper the minimax optimization is used. The parameters that are 
chosen to optimize the response are 2   and r . 

The minimax optimization 
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finds the values of design parameters which minimize the maximum main mass displacement over a range of 
frequency [9], [10]. 
A representative graph of the functions H(Ω) given by Eq.(5) is shown in Figure 3. With respect to Figure 3, the 
goal is to find these absorber parameters for which the peak amplitude  AH   and   BH   are equal and 

are as small as possible while the minimum between this peaks   CH   is as close to  AH  and  BH    
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Figure 2: invariant points P and Q 
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Figure 3: graph of the functions H(Ω) 

 
In other words, we would like to find the system parameters that minimize each of the following 
three maximum values simultaneously: 
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The peaks occur approximately at 1A   and 2B   , given by (10). The minimum between the two 

peaks is specified to occur at   2A B   [9]. 

The solutions of optimization problems are obtained using two functions from the Optimization Toolbox: 
fminsearch and fminimax [11]. 
 
4. NUNERICAL RESULTS 
 
 The numerical example is taken from reference [6] and [9]. Consider a linear damped system with the following 
characteristics m1 = 100 kg, ς1 = 0.10, ω1 = 100 rad/s. The design constraints are such that the mr = 0.10. The 
optimal solution for Den Hartog, classic systems (i.e., ς1 = 0) is 0 909r opt Hartog .   and 

2 0 185opt Hartog .  . 

A compareson of result obtained with the proposed numerical method and those from the other authors is 
reported in Table  1. In Figure 4, the values of optimal parameters and the magnitude of the amplitude–response 
function corresponding to these optimal values are presented, for classical and for this investigation model. 
 

Table 1: A comparison of result given by different methods 
Parameters ς1 mr ωr opt ς2 opt Hmax 

Den Hartog [4] 0.00 0.10 0.909 0.185 4.59 
This 
investigations 

0.00 0.10 0.909 0.185 4.53 

Randall [5] 0.10 0.10 0.861 0.204 2.63 
Thompsonă [7] 0.10 0.10  0.862 0.192 2.62 
Pennestri [8] 0.10 0.10 0.861 0.202 2.62 
This 
investigations 

0.10 0.10 0.862 0.199 2.54 

 

 
Figure 4: The amplitude response and optimum parameters 
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5. CONCLUSION 
 
The design method presented allows the optimal choice of parameters of the damped dynamic vibration 
absorber. Observing Figure 4 one concludes that the case ς1 = 0 gives an upper bound for the primary mass 
vibration amplitude. For the case ς1 = 0  the results given by this method and those obtained with formula (11) 
are the same. The comparison with others methods show good correlation between the results obtained by 
different authors. Such results are almost coincident for those authors who preferred the algebraic approach to 
the use of non-linear programming codes. The graphs presented in this paper show the influence of the design 
aerometers on the performances of the damped dynamic vibration absorber. 
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