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Abstract:  In this paper we proposed a method for passive control of spindle-bearing systems by using optimization 
tehqniques . The goal is to find out the  position of the bearings, the diameters of the spindle (different diameters for several 
segments of the spindle) in order to maximize dynamic stiffness (minimize receptance), i.e. the diminishing of the vibrations. 
Some constraints are imposed: the distances between bearings, different diameters for several segments of the spindle, etc.  
The method is very useful for the design engineers from the very beginning of the design, offering to the designer the optimal 
values of the parameters. 
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1. INTRODUCTION   
 
One of the most important parts of machine tool is the spindle-bearing system. The structural properties of the 
spindle depend on the dimensions of the shaft, bearings, tool holder, and the design configuration of the spindle 
systems. For HMS (high speed machining), the spindle design must be carefully decided by designers. The 
bearing arrangement, the preload for the bearings, the tool holder, tool interface technologies are important 
issues for high speed spindles [6], [9], [10]. For design optimization of spindles, Yang [1] conducted static 
stiffness  to optimize a bearing span using two bearings, and described the methods used to solve the multi-
bearing spans’ optimization method. Taylor et al. [2] developed a program which optimizes the spindle shaft 
diameters to minimize the static deflection with a constrained shaft mass. Wang and Chang [3] simulated a 
spindle-bearing system with a finite element model and compared it to the experimental results. They concluded 
that the optimum bearing spacing for static stiffness does not guarantee an optimum system dynamic stiffness of 
the spindle. Hagiu and Gafiteanu [4] demonstrated a system in which the bearing preload of the grinding 
machine is optimized. The machining performance can be raised by improving dynamic stiffness of spindle-
bearing system [5]. The dynamic performance of the spindle system are strongly influenced by design parameter 
such as: distance between bearing, diameter of the different portion of a spindle, bearing preload, bearing 
spacing etc. In most papers this influence is studied by varying the parameters and analyzing of its effect on the 
system. In this paper we proposed a method for passive control of spindle-bearing systems by using optimization 
tehqniques. The goal is to find out the  position of the bearings, the diameters of the spindle (different diameters 
for several segments of the spindle) in order to maximize dynamic stiffness (minimize receptance), i.e. the 
diminishing of the vibrations. caused by cutting forces, shaft unbalance etc.. Some constraints are imposed: the 
distances between bearings, different diameters for several segments of the spindle, etc. The method is very 
useful for the design engineers from the very beginning of the design, offering to the designer the optimal values 
of the parameters. To solve the problem we have combined the finite element method with optimization 
methods. Therefore, the code computer optimization program in MATLAB is obtained by the coupling of the 
FEM with the non-linear optimization methods with constraints [5].  
  
2. MATHEMATICAL MODEL 
 
2.1. Finite element model of spindle-bearing systems 
 
The most commonly model for analyzing a spindle systems is shown in Figure 1. In this model are the included 
tool, tool-holder, spindle shaft, and bearings. In this study, all components of the spindle–holder–tool assembly 
are modeled as multi-segment beams.  Timoshenko beam model is used [5]. In the following, only axisymmetric 
spindles are considered. The equation of an anisotropic spindle-bearing systems which consists of a flexible 
nonuniform shaft  and anisotropic bearings may be written as [4], [5] 
 

  FqKqGCqM        (1) 
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where q is the global displacement vector, whose upper half contains the nodal displacements in the y-x plane, 
while the lower half contains those in z-y plane, and where the positive definite matrix M is mass (inertia) 
matrix, the skew symmetric matrix G is gyroscopic matrix, and the nonsymmetric matrices C and K are called 
the damping and the stiffness matrices, respectively. The matrices of M, C, G, K, q, and F consist of element 
matrices given as  
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2.2  Receptance and dynamic stiffness 
 
The equation of motion (1) can be rewritten in state space form as 
 

QXBXA             (3) 

where 
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The NN 22   matrices A and B are real but in general indefinite, nonsymmetric. The resulting system of 
equations (3) gives nonself-adjoint eigenvalue problem. In the case of the synchronous excitation 
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transforming Eq. (3) into frequency domain, we obtain  

QdX ARA   ,  



















0

A
A,

A

A
A q

Q
q

q
X j

       (5) 

where the matrix dR  is receptance matrix 

  1 BAR jd  ,  ( 1j )        (6) 

By matrix operational transform the receptance becomes 

    TVbaUR 1 jd          (7) 

where    NN 221221 v.....vvV,u.....uuU    are the NN 22   matrices of right and left eigenvectors.  

Next, let us introduce the dynamic stiffness matrix dK , defined as the inverse of receptance matrix  

  1
dd RK           (8) 

From the Eq. (5) and (7) we obtain 
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where *ur  and *v r  are the upper halves of the corresponding modal vectors.  

 
3. OPTIMIZATION 
 
3.1 Objectiv functions and design parameters 
 
In this section, based on the modal analaysis, we propose an external (passive control) optimization model for 
spindle-bearing systems. The goal being the diminishing the vibrations by the maximizing of the dynamic 
stiffness, i.e. by minimizing of the receptance. To do this we need to find out the design parameters: the position 
of the bearings, the diameters of the shaft (different diameters for several segment of the shaft). Therefore, the 
code computer optimization program in MATLAB is obtained by the coupling of the FEM with the nonlinear 
optimization methods with constraints [5]. The SQP algorithm is used to optimize the bearing locations. The 
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numerical differentiation and a Newton method are used to calculate the Hessian matrix, and BFGS (Boyden-
Fletcher-Goldfarb-Shanno) algorithm is used to update the Hessian matrix. In the case of synchronous excitation 
the objective function is the receptance for a given rotating speed, or the average receptance for an interval of 
rotating speeds. The optimization problem obtained is  
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The design parameters are the distances si between the bearings and the diameters di of the different portions of 
the shaft. Assume shaft type Timoshenko with gyroscopic effects included. 
In the above equations Au is the amplitude of the displacement, AF is the force amplitude,  is the rotor spin 
speed and   is the whirl speed. The objective function is a measure of dynamic stiffness defined by relation (8). 
The authors elaborated several computer codes in MATLAB programming language.  
 
3.2 Numerical example. Optimization of bearing locations 
 
The design variables are bearing spans s1, s2, s3 and s4. In the numerical  simulations, the same numerical data 
set, as in the paper [9], has been used, for compare sake. Fig. 1 shows the design variables for the motorized 
spindle with five bearings. The main spindle specifications of SH-403 are shown in [7]. 
 The maximum spindle speed is 20,000 rpm and the power and torque properties of the spindle motor are set 
from the data shown in [7]. 
 

 
Figure 1: Design variables for the motorized spindle with five bearings 

 
The material parameters:  E = 2.07e11; Poisson = 0.3; G = E/(2*(1+Poisson)); rho = 8300; 
 
Optimization results: 
Natural frequencies and response for optimal configuration: 
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Figure 4: The Campbell diagram and response for bearing leigth preload 
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Optimal bearings pozitions: [5 0.180; 6 0.206; 7 0.232; 8 0.258; 19 0.566; 20 0.596; 21 0.386; 23 0.446]; 
 
 
4. CONCLUSIOS 
 
The distance between the bearings and bearing preload has considerable influence on the stiffness of the spindle. 
In this paper we propose an external (passive control) optimization model for spindle-bearings  systems. The 
goal being the diminishing the vibrations by the maximizing of the dynamic stiffness, i.e. by minimizing of the 
receptance.  The paper proposes a bearing spacing optimization strategy.  The spindle is analyzed by a proposed 
Finite Element Method (FEM) algorithm based on Timoshenko beam elements. Therefore, the code computer 
optimization program in MATLAB is obtained by the coupling of the FEM with the nonlinear optimization 
methods with constraints. The proposed system is demonstrated against a commercially existing machine tool 
(Mori Seiki SH-403 
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Figure 3: Optimal configuration spindle-holder-tool system 


