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ABSTRACT 
 
The paper presents considerations regarding the bending torque produced on vehicle’s rigid axle. The 
torque values are obtained only for the forces acting on the vertical-transversal plane when the vehicle 
is cornering or is skidding. The idea of this work is that the axle’s most stressed section has no fixed 
position, because this is changing with respect to the value of lateral acceleration. 

 
 
INTRODUCTION 
 
Many titles of the automotive literature suggest that the most stressed section of 

the vehicle rigid axle is in the region where the suspension spring is fixed and 
recommend making verifications especially for this section. This paper intends to 
demonstrate that the assumption is not entirely true for the vehicle cornering or 
skidding. 

 
Fig. 1 Scheme of the forces acting on the axle 

Figure 1 presents schematically the forces acting on the axle beam when the 
vehicle moves in a turn. The significance of the symbols used in figure is: Ga – axle 
load; B – axle tread (track width); E – distance between axle springs; h – height of the 



centre of gravity; r – wheel radius; Z – dynamic vertical force on the wheel; Y – lateral 
force on the wheel; Q – vertical load on the spring; x – the distance from a current 
section to the middle of the axle; ay – transversal acceleration during cornering or 
side-skid; g – acceleration of gravity; k = ay/g – relative transversal acceleration. The 
indices i and e refer respectively to the interior and exterior side of the cornering 
curve. 

For easy calculation, some simplifying assumptions are made: 
• the vertical and lateral tyres’ deformations can be neglected; 
• the roll movement is reduced and is not considered; 
• the axle’s own weight is small in comparison with the axle load. 

 
THE FORCES ACTING ON THE AXLE IN LATERAL-VERTICAL PLANE 
 
The balance of the vertical forces and torques acting on the sprung mass 

permits to write the equations for the forces Q compressing the springs: 
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The vertical reactions on the axle wheels by the road are obtained for the 
balance of the vertical forces and torques acting on the whole system (containing 
sprung mass and axle): 
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The lateral reactions on the interior and exterior wheels are: 
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where ξ represents the “used friction”. From the equilibrium of the lateral forces 
obtains  
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and if considers lateral forces proportional to the vertical load for both wheels (ξ1 = ξ1 
= ξ), results 

ξ=k . (5) 

Considering k = ξ and dividing equations (1), (2) and (3) by the axle load Ga 
obtain six coefficients  
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representing respectively the load forces of springs, the vertical and lateral forces to 
the wheels, all produced by an axle load force equal with one unit (1 N). 

Figure 2 presents the coefficients’ dependence on the lateral relative 
acceleration k for an example truck (B = 2 m, E = 1.5 m, h = 1.2 m, r = 0.5 m). 

 
Fig. 2 Dependence on lateral relative acceleration k for spring forces and for 

wheels’ vertical and lateral forces, all produced by a unit axle load 

The maximal obtainable relative acceleration k is the minimum between the 
value that produces the vehicle rollover (zi = 0) and the maximum friction coefficient 
µmax on the wheel-road interface: 
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For many trucks and road trains, B/(2h) is smaller than µmax = 0.8…1 and in 
these circumstances the rollover happens before lateral skid.   

 
THE AXLE’S BENDING TORQUE ACTING IN LATERAL-VERTICAL PLANE 
 
The bending torque on the axle beam considers negative when no lateral 

acceleration exists. Similarly to the forces’ coefficients, it is defined a bending 
coefficient, m = M/Ga, that expresses the bending torque produced by an axle load 
force equal to one unit. The bending coefficient has tree mathematical expressions 
depending on the zone where considers the calculation section (fig. 1): 

22

22

22

2422

42

2422

2

2

2

ExBif

ExEif

BxEif

xBkx
B
hrhk

B
hrxEqmm

EBxk
B
h

E
rhk

B
hrxEqmm

xBkx
B
hrhk

B
hrxBzrym

m

iai

eea

eee

−<<−

≤≤−

<<













−−





 +

−
+=






 −−+=

−
−






 −

−
−=






 −+=

+−





 −

−
−=






 −−=

= , (10) 

In the figure 3, the thin curves on left side represent the bending coefficient m 
for different values of lateral relative acceleration and on the right side is an 
axonometric view for the function m = f(k,x). For each calculation section (-B/2 < x < 
B/2) is a different k value that determine the maximum absolute bending torque |m| 
(figure 4 and thick curve in figure 3). To find these values kt(x) first writes the partial 
derivative ∂m/∂k  



        
Fig. 3 Dependence on lateral relative acceleration k for the bending torque m 

produced by a unit axle load  

                                       
Fig. 4 Two representations of the absolute bending torque |m| produced by an unit axle load 
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and then, equalling with zero, obtains (fig. 5) 
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The values of kt must be positive or zero, to maintain the initial assumptions 
(otherwise the exterior wheel becomes interior wheel). 
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Fig. 5 The values of relative lateral acceleration that determine the maximum absolute bending torque 

on the axle beam 

Also, because on the exterior side of the axle (x > xc) the equation 12 produces 
no value kt in the interval [0, kmax] (figure 5) and because the maximal absolute value 
of the bending coefficient is obtained for the maximal relative lateral acceleration 
(figure 3, left), results that kt = kmax for the interval xc < x < B/2. So, the values of 
relative lateral acceleration which determine maximal bending torque (on a section 
placed at the distance x) are given by 









<<

<<−
=

2

2
max

2

Bxxifk

xxBifk
k

c

ct
t . (14) 

and are represented with thick line in the figure 5. 
The value of the distance xc can be found if solves the equation 
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Now, introducing equations 14 in equation 10, the maximal absolute bending 
coefficient for each axle section (-B/2 < x < B/2) can be calculated and is obtained the 
thick curve on the left side of figure 3. 

 
THE INFLUENCE OF THE CONSTRUCTIVE PARAMETERS 
 
The presented algorithm permits to study the influence of the dimensional 

parameters over the axle’s maximal bending torque. Figure 6 shows curves plotted 
considering different distances between springs. 

As can be seen, at the axle’s end situated to the exterior side of the vehicle 
trajectory (the right side of the figure), an identical value for the bending torques is 
obtained for any distance between springs. If the springs distance E diminishes from 
B to 0, the maximal torque decreases on the exterior side and increase on interior. 
The most reasonable value for E/B is 0.72 (in the case of the example vehicle) and 
determines constant torque for about 70% of axle length. 

If the springs are mounted so E/B is under this optimal value, the bending 
torque increases rapidly to a maximal value, obtainable near the centre of the axle. 
The distance E = 0 is specific to the tractors with pivoting front axle (in this case, the 
height h represents the distance between the pivot axis and the ground). 



 
Fig. 6 Influence of springs distance over the axle’s maximal bending torque 

Figure 7 presents the effect of load height h over the axle’s bending torque: low 
height increases the torque, mainly in the exterior part. 

 
Fig. 7 Influence of the center of gravity height over the axle’s maximal bending torque 

Other influences could be taken into account: wheel radius, shape of the axle (r 
= f(x)), roll effect of the lumped mass, torque produced by longitudinal forces, 
supplementary stress generated by traction-compression or shear forces, different 
friction coefficient for interior and exterior wheels (ξi ≠ ξe), etc. 

 
CONCLUSIONS 
 
The paper demonstrates that the maximal bending torque acting on vehicle rigid 

axles is a complex function with many parameters and the most stressed section 
change its position with respect to the lateral acceleration. A good design for axle and 
suspension needs a careful analysis of these factors, but a dimensional optimisation 
is possible. 

  
REFERENCES 
 

[1] Untaru,M. Poţincu,Gh. Stoicescu,A. Pereş,Gh. Tabacu,I. Dinamica 
autovehiculelor pe roţi. Editura Didactică şi Pedagogică, Bucureşti, 1981. 
[2] Untaru,M. Seitz,N. Frăţilă N. Poţincu,Gh. Pereş,Gh. Tabacu,I. Macarie,T. Calculul 
şi construcţia automobilelor. Editura Didactică şi Pedagogică, Bucureşti, 1982.  


