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Abstract:  The paper presents a simple method to identify and eliminate the effects of slow temperature changes on the 

natural frequencies of slender beams. This temperature compensation is important if frequency evaluation is made for the 

purpose of damage detection, because these changes may overcome the changes due to the occurrence of the damage. The 

method is based on a mathematical relation found by the authors, which permits estimating the frequency at a temperature if 

it is measured at a different temperature. A compensation coefficient derived in a mode by mode manner is applied to the 

measured frequencies at a given temperature. So, the frequencies are found for the reference temperature at which the 

natural frequencies of the undamaged structure are known. The dissimilarity test is made by an original metric; in the case of 

exceeding a threshold previously set the occurrence of damage is signalized. 
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1. INTRODUCTION  
 

Damage detection in structures by vibration-based techniques implies the use of an advanced method of 

assessing natural frequencies [1]-[3]. However, due to the variation of environmental conditions the method can 

fail, because these changes can provoke even higher frequency changes as the damage itself [4]. Especially the 

temperature changes affect the static [5] and dynamic [6] behavior. The reason is the tensile or compression 

forces acting due to these changes.  

In previous research, we have succeeded in implementing dissimilarity algorithms that compare the natural 

frequencies of a structure in different moments. In this way, we have been able to evaluate damages from the 

frequency changes that occur in the event of damage [7]-[9]. Also, we derived mathematical relations to 

calculate the frequency shift in case of temperature variation [10]. These relations can be used for perfectly 

clamped beams, but also for beams with elastic restraints [11]. We propose in this paper a new dissimilarity 

algorithm and involve it to find if the frequency changes occur due to temperature variation or are caused by 

damage. 

 

 

2. TRANSVERSE VIBRATION OF BEAMS IN THE PRE-BUCKLING STAGE 

 

A beam subjected to a temperature variation T , hence suffering a temperature decrease, is subject of a tensile 

load. On the other hand, a beam subjected to a temperature increase T  is subject of a compression load. For 

the slender beam of length L, having the rectangular cross-section b·h, the mass density ρ, the Young’s modulus 

E and the thermal expansion coefficient α, which is in the initial state is fixed at both ends and has a temperature 

T0, a temperature change T  generates an internal load P, which follows the relation: 

P E A T      (1) 

If the temperature achieves the value Cr 1T  , i.e. the first critical temperature, the first critical buckling load Cr 1P   

is accomplished and now the structure attain a transversal displacement (see Fig. 1).  

 

 

 

 

 

 

  

Figure 1:  Beam fixed at both ends in the initial state (continuous line) and after exceeding the critical 

temperature for the first buckling mode (dotted line) 
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The transversal displacement of a slender beam is [12]:  

4 2 4 2
2

4 2 4 2

d v d v d v d v
EI P 0

dx dx dx dx
     (2) 

with the solution: 

( ) sin( ) cos( )1 2 3 4v x c x c x c x c      (3) 

For the beam fixed at it both ends, result the transcendental equation: 

( )sin( ) cos( )L L 2 L 2 0                or              sin( ) cos( )2 2 0         (4) 

The roots i iL   of the transcendental equation are found by numerical or graphical methods. The first six 

values are indicated in Table 1.  

  

Table 1: The first six buckling eigenvalues i  

Symmetric buckling  

modes  
Eigenvalues  

Asymmetric buckling  

modes  
Eigenvalues  

1 6.2831853071 2 8.9868189158 

3 12.566370614 4 15.450503673 

5 18.849555921 6 21.808243318 

 

The critical loads are found from the well-known relation: 

2

cr i
2

EI
P

L


   (5) 

For a vibrating beam subjected to axial loads, the equation of motion is: 

( , ) ( , ) ( , )4 2 2

4 2 2

d v x t d v x t d v x t
EI P A 0

dx dx dt
    (6) 

were P is the absolute value of the axial force and the sign “+” is associated to a compressive force P , while 

the sign “–“ is used for tensile loads.  

If the load P is null, the natural frequency of the i-th mode is expressed by the known mathematical relation: 

2
i

i
2

EI
f

2 L A



 
  (7) 

where i is the eigenvalue for that vibration mode. 

It was shown in [11] that the stored energy distribution along the beam is quite similar for the buckling and the 

bending vibrations in the different modes. Compression diminishes the capacity of the beam to store energy, and 

in consequence the frequency (which is proportional to the stored energy) decreases. A relation to calculate the 

frequency of a simple supported beam for the i-th bending vibration mode if buckling manifests is given in [13]. 

We succeeded to generalize this relation [12]. Now, we can express the frequency of the i-th vibration mode of a 

compressed beam with the axial load P for any end support type with the relation:      

2 2
i

i
2 2

i

PEI L
f

2 L A A



   

 
   

 
 (8) 

that can be expressed in a concentrated form:  

( ) 1i i
cr i

P
f P f

P 

   (9) 

or, employing the if the temperature evolution are considered: 

( ) 1
ref

i i
cr i ref

T T
f T f

T T


 


 (10) 

The term represented by the radical in eq. (9) and (10) is a correction coefficient, denoted in this paper by , 

which permits calculating in the beam’s natural frequency for a known temperature T if the natural  frequency if  

at a reference temperature Tref are known. Hence: 
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1 1
ref

i
cr i cr i ref

T TP

P T T


 


   


 (11) 

The coefficient is valid for the pre-buckling state. Therefore, for the lower vibration modes, it can be used for a 

narrower temperature interval while for higher modes the temperature range for which the coefficient can be 

employed is larger. However, in practice the temperatures lower than Tcr-1 are of interest, because by exceeding 

this temperature the structure collapses. Numerical simulations were performed to confirm the validity of Eq. 

(10). The specimen is a double-clamped steel beam as those presented in figure 1, with the main dimensions and 

the physical and mechanical properties described in table 2.  

  

Table 2: Main properties and dimensions of the specimen 

Physical-mechanical properties Main dimensions 

Mass 

density 

[kg/m3] 

Young 

modulus 

[N/m2] 

Poisson 

ratio 

[-] 

Tensile 

strength 

[MPa] 

Yield 

strength 

[MPa] 

Length 

[mm] 

Width 

[mm] 

Thickness 

[mm] 

7850 2·1011 0.3 470-630 355 1200 50 5 

 

The frequency evolution with the temperature for was targeted. Eight weak-axis vibration modes were 

determined for the temperature range of 0-125C. The reference temperature was chosen . CrefT 24 85  . To be 

able to calculate the correction coefficient  we first determined the critical temperatures. The results are 

presented in table 3. At these temperatures it is expected that beam frequencies become null.  

 

Table 3: First eight critical temperatures cr iT   

Tcr-1 [C] Tcr-2 [C] Tcr-3 [C] Tcr-4 [C] Tcr-5 [C] Tcr-6 [C] Tcr-7 [C] Tcr-8 [C] 

29.816 34.783 44.716 54.649 69.549 84.349 104.051 123.686 

 

The evolution of the first four frequencies is shown in figure 2. One can observe that indeed, the beam 

frequencies become zero if the system’s temperature achieves a critical one. Also, it is observed the frequency 

decreases with the temperature increase. The closer the temperature to the critical value, the faster the decrease 

is. In addition, for all four modes, the temperature at which the frequency becomes null coincide with the critical 

temperature. This qualifies the simulations to be set as references for the results obtained by calculus.  
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Figure 2:  Frequency evolution with the temperature 

 

After applying Eq. (10) to the frequency values found for the reference temperature by simulation we succeed to 

plot curves indicating the frequency evolution with the temperature. An example of such a curve is presented in 

figure 3 (for vibration mode three) in comparison with the curve plotted based on simulation results. A good 

concordance was found, the errors being less that 2.5% for a wide range.  
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The best fit was found in the vicinity of the reference temperature, while for temperatures close to the critical 

temperature the errors can achieve 8%. This error expressed in percents is significant because the frequencies 

close to the critical temperature, to which we refer here, are low. In absolute values the errors can be neglected.    
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Figure 3:  Comparison of curves plotted based on numerical simulations respectively calculus 

 

 The conclusions previously formulated permit us to consider the correction coefficient  proper to suppress the 

effect of temperature changes if modal analysis is performed.    

 

 

3. EMPLOYING THE DISSIMILARITY ARGORITHM TO FIND IF TEMPERATURE 

CHANGE ACTS    
 

Structural changes change the dynamical behavior of structures; hence the modal parameter changes become a 

reliable indicator of damage. Natural frequencies are the mostly used modal parameters in structural health 

monitoring. However, the sensitivity to damage of the natural frequencies is small. In addition, the 

environmental factors can also influence the frequencies, and so damage could be masked or false damage alerts 

are possible. To avoid this, the modal parameter evaluation must be performed at reference values of the 

perturbing environmental factors.  

In this section, we demonstrate how the effect of the temperature on the natural frequencies can be identified and 

suppressed if it affects the measured natural frequencies of beam-like structures. The first several measured 

frequencies are taken as a matrix and compared with the original frequencies and those to which the correction 

coefficient  is applied for a series of temperatures differing from the reference. If for one temperature similarity 

with the original frequencies is found we can assume a temperature change. If not, a structural change occurred.  

Let us consider the beam described in the previous section, for which the weak-axis vibration modes are 

measured at the reference temperature Tref. The sequence can be written: 

 1 2 3 4 5 6( ) : , , , , ,
T

refF T f f f f f f  (12) 

If a new measurement is later performed, it is possible to get other results, for instance:   

 1 2 3 4 5 6( ) : , , , , ,
T

X X X X X X XF T f f f f f f  (13) 

The question is whether the change of frequencies is due to temperature changes or because of damage. To find 

out this, we calculate the structure frequencies at different temperatures using Eq. (10), having as reference the 

frequencies indicated by Eq. (13). The more numerous the temperatures for which the natural frequencies are 

calculated, the more accurate the assessment will be. In this example the frequencies are calculated for 

successively altered temperatures with a step equal to 1C. Obviously, the pre-buckling state is of interest. For 

the beam considered in the previous section, we consider the temperature range 0-29C.  Thus, 29 sequences of 

natural frequencies are obtained by calculus, resulting as the matrices presented in the relation below: 
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 

 

0 1 0 2 0 3 0 4 0 5 0 6 0

1 2 3 4 5 6

( ) : , , , , ,

..................................................................

( ) : , , , , ,

..............................................................

T

T

j j j j j j j

F T f f f f f f

F T f f f f f f

     

     

 29 1 29 2 29 3 29 4 29 5 29 6 29

....

( ) : , , , , ,
T

F T f f f f f f     

 (14) 

We have now 30 matrices (including the original measurement), which are compared one-by-one with the 

second measurement results. The way how the comparison is made is presented in figure 4.  

 

 

                
 

 

 

 

Figure 4:  Similarity test algorithm 

 

The similitude test is made using the second-order Minkowski Distance:  

 ( ( ), ( )) ...
6 2

2 j j X i j iX
i 1

D F T F T f f j 0 29


    (15) 

and is applied for the 30 cases. The index j, for which a minimum is found, should indicate the reference 

temperature at which the original frequencies were acquired. In this example, the original frequencies were 

measured at 24.85C and the second measurement was made by 27C, presumed as unknown. The measurement 

results are: 

    F(Tref):  17.8 Hz,  49.5 Hz,  97.4 Hz,  161.3 Hz, 241.1 Hz,  337.1 Hz 

    F(TX):     9.6 Hz,  39.0 Hz,  86.9 Hz,  149.9Hz,  229.7 Hz,  325.2 Hz 

The 30 results obtained with Eq. (15) after correcting the values of F(TX) are graphically represented in figure 5.   
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Figure 5:  Minkowski distance applied to find the reference temperature 

 

In figure 5 can be seen the reference temperature is correctly indicated, and the Minkowski distance calculated 

for this temperature is D2j = 0.818, thus very low. This means no structural change occurred in the structure. If 

the reference temperature is correctly found but the Minkowski distance is relatively high means a damage in 

incipient phase is present. Finding false reference temperatures indicate the presence of a serious damage.   

F(Tref) F(Tj)   for  j=0...29 

D2j 
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4. CONCLUSION 

 

This paper introduces a correction coefficient that permits evaluating the frequency of beams at a reference 

temperature if the actual frequency and temperature are known. This coefficient applies for all beam boundary 

conditions if the critical temperatures are correctly calculated. Based on this coefficient we developed an 

algorithm to envisage temperature changes during measurements. We successfully employed the algorithm for 

detecting temperature changes in several simulations, demonstrating the reliability of the proposed method.   
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