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Abstract: The paper presents some aspects concerning the launching perform-
ances calculation in the case of the motor vehicles equipped with friction con-
tinuously variable transmissions (CVTs). Having the possibility to realize an 
endless number of transmission ratios, the CVTs may confer the advantage to 
select the engine’s optimum running speed independently of the vehicle driving 
conditions. This will confer some particularities to the vehicle starting process, 
as the finding of the best instantaneous ratio or as the continuous change of the 
vehicle’s apparent mass. These differences with respect to gear-transmission 
vehicles and some driveability aspects will be presented. Also, some computa-
tion results obtained for the launching of a hypothetical vehicle will be shown. 
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1. INTRODUCTION 

Continuously variable transmissions (abbreviated CVTs) are transmissions having as core 
element a variator, device able to change its transmission ratio in a continuous, un-stepped man-
ner. Due to the variator, the CVTs are capable to realize an infinite number of transmission ra-
tios, therefore offering the theoretic advantage of the possibility to decouple the engine’s run-
ning regime from the vehicle’s driving (or working) conditions [5].  

The variators used today on mass-production vehicles are modifying the parameters (speed 
and torque) of the rotational output power with respect to the rotational input power using in-
termediate transformations in electric or hydraulic power or by generation of mechanical fric-
tion forces applied at variable radii. 

Even normally the term CVTs includes transmissions of different types, in the common 
understanding the term “CVTs” designates mainly “friction continuously variable transmis-
sions”, i.e. continuously variable transmissions working on the principle of mechanical friction. 
Further in this article, the term “CVT” will be used with this last meaning, excluding the trans-
missions that contain electric or hydraulic devices for power adjustment. 

In the case of the vehicles equipped with gear transmissions (conventional, stepped trans-
missions), the engine and the driving wheels are normally connected through mechanisms en-
suring constant ratio for each engaged gear, which means the engine speed and the wheels pe-
ripheral speed have a fixed ratio. In the case of the CVT equipped vehicles, the engine and 
wheels speed ratio can be modified as preferred between two extreme (limiting) values. For this 
reason, the calculation of the dynamic performances in general (and the acceleration perform-
ances in particular) presents some differences and complications for the CVT vehicles if com-
pared with stepped transmission vehicles. 

The aim of this paper is to present some calculation particularities of CVT-vehicle launch-
ing process. 
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2. DYNAMIC AND MATHEMATIC MODEL OF THE VEHICLE 

The starting (launching) ability of a vehicle is given by its quality to accelerate as fast as 
possible. The starting performances are indicated by the evolutions of acceleration, speed and 
travelled distance as functions of time. The starting process can be considered in different road 
or vehicle-loading conditions, beginning from a certain vehicle speed value, normally zero (start 
from rest). 

To calculate the starting performances it is necessary first to write the vehicle’s equation of 
motion (acceleration versus time) and then, integrating once this equation, to obtain the function 
of speed and, integrating again, the function of distance versus time. 

In many studies the vehicle starting performances are indicated versus speed (acceleration, 
launching time and launching distance as functions of speed), which imply supplementary trans-
formations of the equations. 

To reach the vehicle’s equation of motion it is necessary firstly to imagine a simplified 
model of the vehicle (the so called “dynamical model”) and then to apply the laws of dynamics 
(Newton’s laws) in order to obtain a set of equations (the so called “mathematical model”) 
which will be solved. Finally, the results will be plotted and interpreted. 

For the study, some simplifying hypotheses will be made. These will be presented gradu-
ally. 

 

Fig. 1 – The external forces acting on a rolling vehicle 

During moving, the vehicle interacts with the environment: the Earth gravity, the road and 
the atmosphere. In the figure 1 it is presented a vehicle (planar model) isolated from the envi-
ronment (all the interactions are replaced by forces). Assuming a straight line movement and no 
lateral interactions, the external forces acting against the vehicle are: 

• the vehicle’s gravitational force (the weight) G, acting in the centre of gravity; 
• the air resistance force (aerodynamic drag) Fa (acting parallel to the road) and the aero-

dynamic lift force Za (acting perpendicular to the road and unrepresented on the figure); these 
components of the total aerodynamic force act in a point called “centre of pressure”; 

• the sum force of the vehicle’s weight G and of the aerodynamic lift force Za induces the 
road’s reaction forces Z1 and Z2, normal to the road surface, which, in turn, determines the roll-
ing resistance forces Fr1 and Fr2 on the wheels of the front and rear axles, respectively; 

• the driving force at the wheel Fw that propel the vehicle; this cumulative force repre-
sents the summation of all the traction forces generated by the driving wheels through the physi-
cal process of grip. 

Fw is the driving force of the vehicle, while Fr = Fr1 + Fr2, Fg = G sinα and Fa represent the 
three resistance forces of any rolling vehicle (rolling, grade and aerodynamic resistances, re-
spectively). The rolling and aerodynamic resistances depend on the vehicle speed, while the 
grade resistance is independent of the vehicle speed. 

The grade resistance Fg is in fact the gravity’s component parallel to the ground: 

Fg = G sinα = mt g sinα (1) 

where: mt is the vehicle mass, G = mt g – the vehicle weight and α – the longitudinal slope 
angle of the road. 
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The rolling resistance is mainly a consequence of the hysteresis (loss of energy, trans-
formed partly in heat) manifested under deflection by the pair tire-ground and by the suspension 
dampers and bushing. Its value can be computed with the equation: 

Fr = f (G cosα - Za) = f (mt g cosα - Za) (2) 

where: G cosα is the vehicle’s weight component perpendicular to the ground surface 
(pressing the tires) and f is the dimensionless coefficient of the rolling resistance. Experiments 
and finite element method simulations of the tires dynamic behavior indicate an increase of the f 
value if the road is bumpier or the vehicle speed is higher [2], [3]. 

Assuming no wind, the air resistance (aerodynamic drag) can be computed with the for-
mula: 

Fa = (1/2) ρ cd A v2 (3) 

where ρ is the air density; cd – the aerodynamic drag coefficient of the vehicle; A – the 
frontal area of the vehicle. 

Applying the Newton’s second law for the vehicle’s planar model from figure 1 results the 
instantaneous acceleration of the vehicle: 

a = (Fw - Fr - Fg - Fa)/mt    (4) 

In that equation, the acceleration a is a function of time, vehicle speed v and traveled dis-
tance x. Because the speed and the distance can be obtained by integration,  

v = 
t

t
a

0
dt                           x = 

t

t
v

0
dt (5) 

the vehicle movement (and the starting performance) is described by the system formed by 
the three equations (4) and (5). 

In some particular cases, the forces Fw, Fr and Fa in the equation (4) can be considered as 
functions of only one parameter, the vehicle speed v, while the force Fg can be considered con-
stant. In this situation it is preferred to express the vehicle’s acceleration a and distance x as 
functions of the speed v. For that, the equations (5) will be written as differentials: 

a = dv/dt                           v = dx/dt     
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that leads to the equations: 
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Using the equation of motion (4) seems to be a very easy way to calculate the vehicle’s 
starting performances. Unfortunately, because the (conventional) driving force at the wheel Fw 
is obtained from the contribution of the grip forces of all the vehicle’s driving wheels, this force 
can be limited under two aspects: 

• by the grip properties at the tire-road interfaces (at the driving wheels); 
• by the possibilities of the engine, transmission and driveline. 
In other words, the driving force at the wheels Fw is the minimum of the force Fwgr limited 

by the tire-road grip and the force Fwdt limited by the drivetrain characteristics: 

Fw = min(Fwgr, Fwdt) (8) 

If Fwdt > Fwgr the driving wheels will spin-out evidently, the tires leaving black marks on 
tarmac or concrete roads. 
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The driving force limited by the grip Fwgrj generated by one particular wheel j depends on 
the instantaneous wheel load Zj exerted by the road, on the grip coefficient μj and on the instan-
taneous wheel slip-coefficient sj (through a function ξj). Thus, the driving force limited by the 
grip of the wheel j calculates as: 

Fwgrj = Zj μj ξj(sj) (9) 

In the case of the vehicle launching, the function ξ(s) = Fwgr / Fwgrmax depends on the tire 
and road stiffness, takes values in the interval 0…1 and has a shape as the one presented in    
figure 2, while the slip-coefficient sj of the wheel j is given by the equation: 

sj = 
jj

j

r

v


1  (10) 

 where vj, ωj and rj are, respectively, the translational speed, the rotational speed and the 
dynamic radius of the wheel j. If the vehicle accelerates in straight line movement, the speeds vj 
of the wheels centers and the vehicle speed v can be considered equal. 

 

Fig. 2 – The relative grip coefficient versus slip 

As can be figured-out, computing the force Fwgr as the sum of the particular forces Fwgrj 
isn’t an easy task, mainly because the normal loads Zj and the dynamic radii rj of the tires vary 
due to the driving force. In terms of computation, this means also that, for each integration step, 
an algebraic system of equation must be solved in order to found the instantaneous values Zj. 
Moreover, the dynamic load transfer between axles will generate pitch movements of the vehi-
cle body, some energy being accumulated in the suspension springs or dissipated in the dampers 
and affecting so the precision of the calculation. 

3. APPARENT MASS OF THE VEHICLE 

During the vehicle launching, the mechanical energy produced by the engine is used not 
only to overcome the resistances and to accelerate in translation the vehicle mass mt, but also to 
accelerate all its rotating parts. As a result, a smaller driving force Fw as expected will be meas-
ured at the wheels, i.e. the force Fwdt limited by the drivetrain characteristics. Due to that phe-
nomenon, to calculate the force Fwdt it is needed an energetic approach [4]: it will be applied the 
principle of energy conservation, which states the derivative (the instantaneous change rate) of 
the vehicle’s total mechanical energy is equal with the engine power Pe minus the total power 
losses: 

dt

dEtot  = Pe - ∑Ploss (11) 

Assuming only negligible amounts of potential energy can be accumulated by the 
drivetrain shafts and suspension springs, the vehicle’s mechanical energy consists on the kinetic 
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energy Ek of the parts in translation and rotation and on the potential energy Ep, determined by 
the vehicle altitude: 

Etot = Ek + Ep = Ekt +Ekr + Ep (12) 

The kinetic energy Ek includes the one of the translational mass mt and those of any rotat-
ing part j kinematically connected with the wheels: 

Ek = 
j

jjt
Ivm

22

22 
 = 

2

2vmap  (13) 

where ωj and Ij are the speed and the moment of inertia of the rotating part j. 
The vehicle behaves as having a bigger translational mass, the apparent mass map: 
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which accumulates in translation the same kinetic energy as the entire vehicle. In the last 
equation, the term 
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is called coefficient of the rotating parts influence, is always bigger as 1 and will decrease 
if the vehicle mass mt increases. The terms λwn, λwd, λe and λv represents the contributions of the 
main rotating parts to the overall influence coefficient, respectively the non-driving wheels, the 
driving wheels, the engine and the intermediate parts (belt, chain, rollers) of the variator. 

The influence of the wheels can be computed with the next equations: 
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where Iwn and Iwd are the equivalent moments of inertia of the non-driving and driving 
wheels and ωwn and ωwd are the corresponding rotational speeds. 

From the equation (10) results: 
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which shows that the apparent mass of the vehicle will depend on the wheels slip s. 
During vehicle launching, for the non-driving wheels the slip is always very small (swn≈0), 

and so the equations (16) become: 
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In the conditions of small slip, the influence of the wheels inertia is generally reduced over 
the apparent mass of the cars and small trucks: λwn = 0.01…0.02 and λwd = 0.02…0.03 (that 
means the “added” mass by the wheels rotation represents 3…5% of the true vehicle mass. 

The influence of the engine inertia versus the apparent mass may be important due to the 
engine’s high rotation speed and can be computed with the next equation: 
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where it is the total (overall) instantaneous transmission ratio (between engine and driving 
wheels) and Ie is the equivalent moment of inertia of the parts rotating solidary with the engine. 
Due to the proportionality with the square of the overall transmission ratio, the term λe can be 
many times bigger as the term λw that corresponds to all the wheels. 

Most of the CVT types found today on the vehicles market use variators with intermediate 
parts connecting by friction the input and output shafts: push or pull belts disposed between pul-
leys or rollers disposed between toroidal disks. The instantaneous speed ωv of these elements 
(belt, chain or rollers) depends on the engine speed and on the current variator ratio iv: 

ωv = C
v

e

i1


 (20) 

where C is a constant depending on the variator design. Using equations (19) and (20) and 
remembering that the variator ratio iv is included in the overall transmission ratio it (it = iv ia i0, 
with the adaptation ratio ia and the final drive ratio i0 having constant values), the inertia influ-
ence term λv of the variator intermediate parts can be calculated easily. 

The left side of the figure 3 presents, as an example, a possible law of the transmission ra-
tio (itr = iv ia) variation versus vehicle speed (in km/h), alongside with the plot of the rotating-
parts influence-coefficient δ. In the considered case, δ maximum reach the value 1.34 (at low 
speeds), while the minimum value is 1.03. 

      

Fig. 3 – Example of the variation versus vehicle speed of the transmission ratio (red plots), 
of the rotating-parts influence-coefficient for loaded vehicle (left side, blue plot)  

and of the engine speed (right side, green and blue plots) 

Comparing gear-transmission vehicles with CVT vehicles it observes some differences: 
• considering small wheel slip, the term λe remains constant when a gear is engaged (and 

also the δ coefficient) on a conventional vehicle, while on the CVT vehicles this term can con-
tinuously change its value; 

• for the same transmission ratio, the moment of inertia of the engine connected parts Ie is 
normally bigger at the CVT vehicles (due to the variator rotors); 

• the term λv will not exist for gear-transmission vehicles. 

4. EQUATION OF VEHICLE MOTION 

In order to deduce the equation of vehicle’s motion it is necessary to come back to the en-
ergy conservation principle applied to the vehicle, i.e. to the equation (11). 

The potential energy of the vehicle is: 

Ep = mt g h (21) 

where g = 9.81 m/s2 represent the gravitational acceleration and h the altitude. 
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Introducing equations (12)…(14) and (21) in the equation (11) obtains: 

dt

dEtot = map v 
dt

dv
+ mt g 

dt

dh
= 

                                                         =map v a + mt g v sinα = Pe-∑Ploss (22) 

where 
dt

dh
 ≈ 

dt

dx
 sinα = v sinα and a is the vehicle’s instantaneous acceleration. 

From the equation (22) results: 

map a = Pe/v - (∑Ploss)/v - mt g sinα = 
                                                       = Pe/v - (Pf + Pr + Pa)/v - mt g sinα = 
                                                       = (Pe - Pf)/v - Pr/v - Pa/v - mt g sinα = 
                                                       = Pef/v - Pr/v - Pa/v - mt g sinα = 
                                                       = Fef - Fr - Fa - Fg = Fef - (Fr + Fg + Fa) (23) 

that permits to calculate the vehicle’s acceleration, in the well known form indicated in the 
literature (for example [1],  [2]). 

A discussion it is necessary in this point of the presentation. Even the equations (4) and 
(23) looks similar, there are some differences: 

• in the equation (4) the mass is the true mass mt of the vehicle, while in the equation (23) 
appears the apparent mass map = mt δ; 

• in the equation (4) appears the true traction force Fw generated by the driving wheels, 
while in the equation (23) the force Fef is a conventional force, bigger as Fw, obtained when di-
vides to the vehicle speed the difference between the power of the engine and the power lost by 
friction in the driveline. 

It is a common approach to consider the driveline friction through the help of the overall 
driveline efficiency η in steady-state condition: Pe - Pf ≈ Pess η. This can be permitted because 
the engine power in transient condition Pe is smaller as the engine power in steady-state condi-
tion Pess (due to the delayed response of the engine), but also the driveline friction losses in tran-
sient condition Pf are smaller as the ones in steady-state condition. Thus, the conventional force 
at the wheel, in equation (23), is Fef ≈ Pess η/v (assuming small driving wheels slip).  

Another important thing to remember is that the equation (23) is true and can be used as the 
unique equation of vehicle movement only if no or very small slippage appears in the driveline 
couplings. If this hypothesis isn’t fulfilled, aberrant results may be obtained [1] (for example, 
the vehicle acceleration at zero speed is always zero!!!). 

5. TRANSMISSION RATIO VARIATION LAWS 

During vehicle launching, opposed to the gear-transmission vehicle,  a CVT vehicle dis-
poses of an infinite number of ratios. One problem was: haw to choose the best ratio at a certain 
traveling speed in order to obtain the biggest acceleration value? Mathematically, the answer 
consists in founding the value of the transmission ratio that corresponds to a null value of the 
acceleration derivative da/dit – with the function a(it) from the equation (23). 

But, for light vehicles (car and small trucks) disposing of conventional CVTs (with only 
one power flow), at a certain engine power, the biggest ratio (in the domain permitted by the 
CVT) will generate the maximal acceleration. 

A second question was: in which proportion must be used the engine power for the accel-
eration of the vehicle in translation and for the acceleration of the rotating parts? The answer is: 
the engine power must be used first to accelerate the engine itself as quick as possible, in order 
to dispose rapidly of its maximum power, to accelerate then the vehicle. This kind of actuation 
was implemented at the early CVT types and is presented in figure 3 with green color. 

Unfortunately, this control law was not agreed or accepted by the drivers because the vehi-
cle seems to “hesitate” at a sudden kick-down of the accelerator pedal, producing discomfort or 
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even panic. This CVT comportment, considered by many drivers as a lack in the driveability 
qualities, mainly at the overtaking maneuvers, was suggestive named „rubber band effect”, 
„slingshot effect”, „motorboat feel” or „slipping clutch syndrome” [ 5]. 

To realize an “acceptable” acceleration behavior, the engineers have changed the way the 
CVT vehicle accelerates, ensuring a continuous increase of the engine speed during vehicle 
launching, as can be observed the blue plot in figure 3, the right side. But, this new manner of 
CVT control generates poorer starting performances. New CVT types, having fuzzy-logic based 
actuation controls for example, are able to “learn” the driving style, “studying” the driver’s 
commands and choosing the best control law. 

 

Fig. 4 – Starting characteristics for an example CVT vehicle (acceleration versus speed) 
red plot – loaded vehicle; blue plot – unloaded vehicle  

In the figure 4 are presented starting characteristics of a hypothetical vehicle equipped with 
a single power-flow CVT. The ratio changing strategy corresponds to the green plot in the     
figure 3, right side: the starting clutch it is engaged gradually up to 18 km/h, maintaining the 
engine speed at 1800 rpm; then the CVT’s maximal ratio it is maintained until the engine 
reaches its rated speed (4300 rpm and 37 km/h); finally, the maximal engine power is main-
tained and the CVT’s ratio is reduced continuously. 

3. CONCLUSIONS 

The paper presented specific aspects concerning the computation of the launching perform-
ances of the motor vehicles equipped with friction continuously variable transmissions (CVTs). 
General aspects of the vehicle starting process modeling and some particularities appearing in 
the case of CVT implementation were presented, as the continuous change of the vehicle’s ap-
parent mass and the finding of the best instantaneous ratio. These differences with respect to 
gear-transmission vehicles and some driveability aspects were also presented. Finally, few com-
putation results obtained for the launching of a hypothetical vehicle were shown. 
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