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Abstract: The first part of the paper deals with criteria and methods to control systems absolute stabilization.  The second part 

focuses on variational methods and systems optimal control methods: Lurie, Euler-Lagrange and Pontreaguine principles to obtain 

minimal time or optimal fuel or energy consumption.  

The examples included in the paper are from mechanics, electromagnetism, hydro-aero-dynamics, etc. 
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1. INTRODUCTION  
 

The automatic regulation of dynamical systems stability occupies a fundamental position in nowadays science and 

technique, following the optimization of the technological process of the cutting tools, of the robots, of the movement 

vehicles regime or of some machines components, of energetic radioactive regimes, chemical, electromagnetic, 

thermal, hydro-aerodynamic regimes, etc. The studies and the technical achievements are complex, involving 

mathematical models for close-loop circuits, following for the automatic regulation the integration of some 

mechanisms and devices with inverse reaction of response for the control and the fast and efficient elimination of the 

perturbations which can appears along these processes or dynamical regimes. Generally, these dynamical regimes are 

nonlinear and it was necessarily some contributions and special achievements for automatic regulation, generating the 

automatic regulation of absolute stability (a.r.a.s.) for these classes of nonlinearities. 

We highlight two special methods (a.r.a.s.): 

  • Liapunov's function method discovered by A.I. Lurie [5] and developed into a series of studies by M.A Aizerman, 

V.A. Iakubovici, F.R. Gantmaher, R.E. Kalman, D.R. Merkin [6] and others. 

 • Frequency method developed by researcher VM Popov [6] generalizing the criterion of Nyquist, then developed in 

many further studies.  

We note the contributions of Romanian researchers recognized by the works and monographs on the stability and 

optimal control theory: C. Corduneanu, A. Halanay, V. Barbu, Th. Morozan, G. Dinca, M. Megan, Vl. Rasvan, V. 

Ionescu, M.E. Popescu, S. Chiriacescu, A. Georgescu and also who studied directly on (a.r.a.s.): I. Dumitrache, D. 

Popescu, C. Belea, V. Rasvan, S. Chiriacescu and other recent works. 

The theorem Kalman -Yakubovich - Popov (K-Y-P) highlights the fact that the two methods are equivalent. The study 

in the case of automatic regulation for the absolute stabilization of the crafts dynamics in the case of rolling 

perturbations will be made. After obtaining of the stability the optimal control will be made with the Pontreaguine 

extremum principle using the criterion of minimal time of the stabilization and the rolling absorption.  

It will be considered the rectilinear and uniform course of an aircraft in horizontal plane. We take Oxyz the axis system 

(xOy - horizontal and xOz - vertical). The horizontal axis x’Ox is parallel with the longitudinal axis of the craft that 

pass through the centroid G. During the flight some perturbations could appear due to some external ot internal forces. 

Thus, it will be determined the momentum that is highlighted by the rotation angles around these axis (figure 1):   

     •  ∠𝜓 is the rotation angle around Oy axis - pitch angle  

     • ∠𝜃 the rotation angle around Ox axis - rolling angle  

     • ∠Φ the rotation angle around Oz axis - angle of yaw  
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Figure 1: The momentum in the case of aircraft dynamics 

 

Some disconnected studies regarding the longitudinal stability (pitching) and the lateral stability (rolling and gyration) 

will be presented in the following chapters of this paper. The movement equations related to (𝜓, 𝜃, Φ) form a nonlinear 

system of 6th degree. Separately, it was made the disconnected study regarding the longitudinal stability of the flight, 

namely the pitching problem with the automatic regulation (a.r.a.s.) and autopilot. 

The lateral perturbations can be:   

     • atmospheric, air gaps, wind, waves which determine the gyration and that implies rolling (and reciprocally)  

     • faults on speed - frequency (stop) the propelling engine (2-4-6 traction engine) that produce swerving combining 

rolling with gyration.  

     • failure of the landing gear  

     • very sensitive are the supersonic aircraft (with high speed) with the wings in V - the fuselage is located on the 

bottom generation a dihedral effect.  

The stability regulation is made with ailerons, shutters, flaps, fluid shutters with jet (blowing or absorption). These 

conjugated turnings are directed by an automatic regulator with levers, mechanisms, hydro-pneumatic systems (anti-

swing). It is equipped with sensors, measurement and control devices, gyroscopes with rigid quickly response or 

controllers for the regulation of the engine's speed. These automatic regulations are encountered at crafts, rockets, 

torpedoes, crafts with vertical take-off and landing. 

The study of the stability and the automatic stabilization in rolling case with the variables: 𝜃 – rolling angle and 𝜃̇ – 

(angular) speed. 

The horizontal tail assembly controls the rolling, and the direction is controlled by the rudder airplane that highlights 

the gyration. 

The side streams can perturb the direction producing gyration and sideslip. In such case the symmetry of the 

aerodynamic form is modified and the bearing wings varies and implies the rolling. The swing depends on the yaw 

momentum.  

 

 

2. ARAS AND OPTIMAL CONTROL IN CASE OF ROLLING PERTURBATIONS 

 

As mentioned before, it will be considered the longitudinal flight of the aircraft or missile - uniform, without lateral 

disturbances, asymmetries or gyrations; we only have rolling angle 𝜃(𝑡) perturbations. Suppose a perturbed trajectory 

that starts at the moment 𝑡0 = 0 from 𝑥0(0) = 𝛼 and it may be stabilized in minimal time t* in the origin O*. 

The optimal control u* and minimum transfer time t* will be determined. The linearized equation of the roll angle 𝜃(𝑡) 

with respect to the horizontal axis Ox is: 
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 𝑇𝜃̈ + 𝜃̇ = −𝑘          (1) 

where T is the time constant, k is a constant (i.e. the product of the coefficients of rolling and gyration moments) and 

u(t) is the control function. 

In the phase plane (𝑥1, 𝑥2) with 𝜃 = 𝑥1 we have: 

 {
𝑥̇1 = 𝑥2

𝑥̇2 =  − 
1

𝑇
𝑥2 −

𝑘

𝑇
𝑢

  ;    𝑘 > 0, 𝑇 > 0       (2) 

The system (2) is linear and autonomous with: 

 𝑋 = (
𝑥1

𝑥2
), 𝐴 = (

0 1

0 −
1

𝑇

), 𝐵 = (
0

−
𝑘

𝑇

)       (3) 

KALMAN: The system is controllable if 𝑟𝑎𝑛𝑔(𝐵, 𝐴𝐵) = 2. 

It is also absolutely stabilizable in origin, with its Eigen values 𝑟1 = 0, 𝑟2 = −
1

𝑇
. 

At the initial moment the perturbed system was in position: 

 𝑥1(0) = 𝛼1, 𝑥2(0) = 𝛼2         (4) 

and we want it to be brought to the final (stable) position O(0,0) in minimum time, t*, that is 

𝑥(𝑡∗) = 0: 

 𝑥1(𝑡∗) = 0, 𝑥2(𝑡∗) = 0          (5) 

Note that the states 𝑥(0) = 𝛼, 𝑥(𝑡∗) = 0 and 𝑡0 = 0 are fixed, and the final time t1 has a free horizon and must be 

determined  min(𝑡1) = 𝑡∗ , with 𝐼[𝑢∗] = min(𝑡1 − 𝑡0) = 𝑡∗. 

Here the order of the system is 𝑛 = 2  and for the parameter 𝑢(𝑡) = 𝑢1, 𝑚 = 1. 

The allowable domain for 𝑢(𝑡) is: 

 𝑈 = {𝑢|𝑢 ∈ [−1, 1]}         (6) 

We apply the principle of the minimum, the goal (criterion) being to minimize the stabilization time. In order to 

simplify the analysis of the optimal control and the study of the solutions we will make a non-singular linear 

transformation of the system, 𝑥 ↔ 𝑧: 

 𝑥 = 𝑃𝑧, 𝑥̇ = 𝑃𝑧̇;   𝑧 = 𝑃−1𝑥; (𝑥1, 𝑥2) ↔ (𝑧1, 𝑧2), 𝐴 ↔ 𝑀     (7) 

We will determine the matrix 𝑃2×2 so that 𝑀 = (
0 0
𝑟1 𝑟2

) . With substitutions (7), from (2) – (5) it results: 

  𝑧̇ = 𝑀𝑧 + 𝑃−1𝐵𝑢, {
𝑧̇1 = −𝑘𝑢

𝑧̇2 = −
1

𝑇
𝑧2 + 𝑘𝑢

       (8) 

‘ 𝑀 = (
0 0

0 −
1

𝑇

) ;   𝑃 = (
1 1

1 −
1

𝑇

) , 𝑑𝑒𝑡𝑃 = −1 −
1

𝑇
≠ 0     (9) 

Relationships will be transformed and bilocal conditions will be: 

 {
𝑥1 = 𝑧1 + 𝑧2

𝑥2 = −
𝑧1

𝑇

   ;   {
𝑧1 = −𝑇𝑥2

𝑧2 = 𝑥1 + 𝑇𝑥2
        (10) 

 𝑧(0) = 𝛼;  𝑧1
0 = 𝛼1;   𝑧2

0 = 𝛼2𝑧(𝑡1) = 0;  𝑧1(𝑡∗) = 0, 𝑧2(𝑡∗) = 0    (11) 

This non-singular transform preserves the dynamic and stable states: 

 (𝑥1
0, 𝑥2

0) ↔ (𝛼1, 𝛼2);   (𝑥1
1(𝑡∗), 𝑥2

1(𝑡∗)) ↔ (0,0). 

We build the Hamiltonian 𝐻[𝑡, 𝑧, 𝑢, 𝜆] : 

 𝐻 = 1 + 𝜆1𝑧̇1 + 𝜆2𝑧̇2 , 𝑡 ∈ [0, 𝑡1]        (12) 

 𝑧̇ =
𝜕𝐻

𝜕𝜆
;  𝜆̇ = −

𝜕𝐻

𝜕𝑧̇
         (13) 

 𝜆̇ = −𝑀′𝜆 , 𝜆 = 𝜆(𝑡) → 𝜆1(𝑡), 𝜆2(𝑡)       (14) 

and 𝑀′ is the transpose of matrix M. 

We make these systems more explicit related to H: 

 𝐻[𝑡, 𝑧, 𝑢, 𝜆] = 1 −
𝜆2

𝑇
𝑧2 + 𝑢(𝑡)[𝜆2(𝑡) − 𝜆1(𝑡)]𝑘      (15) 

In (15) it may be noticed that 𝐻 = 𝐻[𝑢]  is continuous for 𝑢 ∈ [−1,1]  and it’s shape is linear, so the extremes of 

H[u] will be at the ends of this interval: 

 𝑢∗ = ±1, 𝐻𝑚𝑖𝑛 = 𝐻[𝑢∗, 𝑡∗] = 𝐻∗        (16) 

for 

 𝑢∗ = −𝑠𝑔𝑛(𝜆2 − 𝜆1), 𝑡 ∈ [0, 𝑡∗]        (17) 

In this case, with u* from (17), we will determine H*, t* and the optimal trajectories of the systems (13), (14): 

 {
𝑧̇1

∗ =
𝜕𝐻∗

𝜕𝜆1
= −𝑘𝑢∗

𝑧̇2
∗ =

𝜕𝐻∗

𝜕𝜆2
= −

𝑧2
∗

𝑇
+ 𝑘𝑢∗

         (18) 
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 {
𝜆̇1

∗ =
𝜕𝐻∗

𝜕𝑧1
= 0

𝜆̇2
∗ =

𝜕𝐻∗

𝜕𝑧2
=

𝜆2
∗

𝑇

          (19) 

We notice that (14) is verified by (19), 𝜆∗(0) = 𝐶, so with the solutions of (18), (19) and taking into consideration 

the condition: 

 𝑧0
∗ = 𝛼, 𝑧1

∗(𝑡∗) = 0,         (20) 

it results: 

 {
𝑧1

∗(𝑡) = −𝑘𝑢∗𝑡 + 𝛼1

𝑧2
∗(𝑡) = (𝛼2 − 𝑘𝑢∗𝑇)𝑒−

1

𝑇 + 𝑘𝑢∗𝑇
, 𝑡 ∈ [0, 𝑡1]      (21) 

 {
𝜆1(𝑡) = 𝐶1

𝜆2(𝑡) = 𝐶2𝑒
𝑡

𝑇

          (22) 

 𝑢∗ = 𝑠𝑔𝑛 (𝐶1 − 𝐶2𝑒
𝑡

𝑇) , 𝑡 ∈ [0, 𝑡1]        (23) 

FELDBAUM Theorem states that a nth-order system can make at most (n-1) switches on n intervals.  

From the switching equation (23) we notice that the sign can be changed at most once, i.e. when 𝜆1 = 𝜆2 (the root of 

the switching function: 𝐹 ≡ 𝐶1 − 𝐶2𝑒
𝑡

𝑇 = 0). 

 𝜏∗ = 𝑇𝑙𝑛 (
𝐶1

𝐶2
) , 𝐶2 ≠ 0,

𝐶1

𝐶2
> 0        (24) 

And for  0 < 𝜏∗ we have 
𝐶1

𝐶2
≥ 1. 

 As  
𝐶1

𝐶2
< 1  case isn’t possible, so there will be no relay switching for 𝑡 ∈ [0, 𝑡1] 

and the extreme command will be 𝑢1
∗ = −1, 𝑢2

∗ = +1.    
 𝐶1 = 𝐶2 = 0 is impossible too, because 𝜆 ≠ 0.   
We’ll analyze the two possible cases. 

 

Case I: No (relay) commutation 

 𝐶2 = 0, 𝜆1
∗ = 𝐶1, 𝜆2

∗ = 0, 𝐻[𝑢∗, 𝑡∗] = 1 − 𝑘𝐶1𝑠𝑔𝑛𝐶1 = 0, 𝐶1 = ±
1

𝑘
 , 

           𝑢∗ = 𝑠𝑔𝑛𝜆1 = 𝑠𝑔𝑛𝐶1, 𝐶1 = ±
1

𝑘
                                                                                  (25) 

It comes out that for 𝑡 ∈ [0, 𝑡1] there is no relay switching and the extreme solutions will be: 

𝑢∗ = −1 dacă 𝐶1 < 0 și 𝑢∗ = +1 dacă 𝐶1 > 0,  

and the optimal trajectories (21) will be for 𝑢∗ = ±1. 
        By imposing the final condition (20) at the final point (target) 𝑧(𝑡 = 𝑡∗) = 0 in (21) we obtain that the trajectories 

will pass through origin while stabilizing, i.e.: 

            𝛼1 = 𝑘𝑢∗𝑡∗,      𝛼2 = 𝑘𝑢∗𝑇 (1 − 𝑒
𝑡∗

𝑇 )        (26) 

           min 𝑡1 = 𝑡∗ =
|𝛼1|

𝑘
,    𝑢∗ = ±1         (27) 

Subtracting t* from (26), we obtain that in the plane (𝑧1, 𝑧2) the conditions that (𝛼1, 𝛼2) must respect so that the 

trajectories will meet the origin in the moment t* will be: 

  𝛼2 = ±𝑘𝑇 (1 − 𝑒±
𝛼1
𝑘𝑇)     (28) 

i.e.  𝑧2 = ±𝑘𝑇 (1 − 𝑒±
𝑧1
𝑘𝑇)     (29) 

The upper sign corresponds to the C+ curve and lower to the C– (switching curve), where 𝑧2 ∈ (−𝑘𝑇 , 𝑘𝑇) as in the 

figure 2. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Un-commutated trajectories 
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Case II: General (with commutation) 

𝐶2 ≠ 0,
𝐶1

𝐶2
> 0: extreme control switches with (24) in the moment  𝜏∗ = 𝑇𝑙𝑛 (

𝐶1

𝐶2
), 0 < 𝜏∗ < 𝑡1. In this case the 

stabilization process will consist in two steps: 

- the trajectories – of type 𝐶±
′  – will start at the moment 𝑡0 = 0 from the point 𝛾(𝛾1, 𝛾2) until the moment 𝜏∗ 

when 𝑧∗(𝑄, 𝜏∗) = 𝛽 and u* switches and then for 𝑡 ∈ [𝜏∗, 𝑡1] the trajectories will change to those of type (29) 

starting at 𝑡0 = 𝜏∗ from 𝑄(𝛽), i.e. of type 𝐶± which reach origin 𝑂(𝑡1 = 𝑡∗) obtaining 0 < 𝜏∗ < 𝑡∗. These 

trajectories are plotted in figure 3 and optimally we will have: 

𝐶∗ = {𝐶+
′ ∪ 𝐶−} ∪ {𝐶−

′ ∪ 𝐶+} . For  𝐶±
′  cu  𝑧1

∗(𝑡0 = 0) = 𝛾  we obtain the solutions: 

             𝑧1
∗ = 𝛾1 ± 𝑘𝑡, 𝑧2

∗ = (𝛾2 ± 𝑘𝑇)𝑒−
𝑡

𝑇 ∓ 𝑘𝑇, 𝑡 ∈ [0, 𝜏∗]                                                 (30) 

             𝑧2
∗ − 𝑘𝑢∗𝑇 = (𝛾2 − 𝑘𝑢𝑇)𝑒

𝑧1
∗ −𝛾1
𝑢∗𝑘𝑇                                                                                   (31) 

 𝑄(𝛽) coordinates are computed from (30)  for 𝑡 = 𝜏∗, 𝑧1,2
∗ = 𝛽1,2 , i.e: 

             𝛽1 = 𝛾1 − 𝑘𝑢∗𝜏∗,    𝛽2 = 𝑘𝑢∗𝑇 + (𝛾2 − 𝑘𝑢∗𝑇)𝑒−𝜏∗𝑇      (32) 

- We pass to the next step, 𝑡 ∈ [𝜏∗, 𝑡1], where the trajectories start from 𝑄(𝜏∗, 𝑡1)  and finally reach the origin 

𝑂(𝑡1 = 𝑡∗), i.e. 𝑂(0,0); we notice that they are of type (29): 

            𝑡∗ = 𝜏∗ + |
𝛽1

𝑘𝑢∗| =
|𝛼1|

𝑘
+

|𝛽1|

𝑘
, according to FELDBAUM  theorem.    (33) 

 

              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: One-commutation trajectory 

 

Substituting 𝑡∗, 𝜏∗, 𝑢∗, 𝑟∗ in  𝐻 = 𝐻∗ = 0 on the intervals (0, 𝜏∗), (𝜏∗, 𝛽) gives the connection between C1, C2 – the 

parameters of the relay type regulator with switching point 𝑡 = 𝜏∗. 

The analysis and study are transmitted in the plane of the phases (𝑥1, 𝑥2) with the relations (10), (11). 
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3. CONCLUSION 

 

This paper focuses on a theoretical and applicative study of aircraft dynamics. Effectively, by using analytical 

graphical and numerical methods, a horizontally perturbed flying object is stabilized in minimal time. This study may 

be extended, taking into consideration more criteria for the optimal control, like a minimization of the fuel 

consumption, by using the same relay-type (on-off) regulator. 

The microprocessor that controls the entire navigation process of the aircraft, including its (auto)stabilization, must 

be programmed with the results obtained in this work in order to correct the deviation from the course due to the roll 

perturbations. 
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