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Abstract:  Nowadays, noise level is a very important factor of pollution of the environment, of the comfort of life, especially 

in cities. One of the most important sources of noise is the noise produced by motor vehicles. In this context, an element to 

reduce the noise level is the exhaust drum, which over time has experienced various constructional and dimensional variants, 

which will make it as effective as possible. In addition to an experimental study, today we can add a numerical study of the 

propagation of acoustic waves in the exhaust drum. This paper presents a hypothetical numerical study of an exhaust drum, 

which can be developed and adapted for any engine, for any constructive and dimensional solution. The numerical analysis 

presented is performed by the finite elements method, using the ANSYS program, which offers a number of advantages, 

among which the finite elements dedicated and the consideration of the frequency of the sound waves are the most important 

offered facilities. The paper also presents a model for analyzing the results through post-processing graphics, which allows 

to substantiate the conclusions.  
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1. INTRODUCTION 
 

The noise level of motor vehicles is fundamentally determined by the exhaust drum. This must produce an 

attenuation of the characteristics of the sound waves as strong as possible. Achieving this goal is done both 

experimentally and through theoretical studies. The study with finite elements is one of the most efficient ones, 

which, besides the results offered, also offers a very useful graphic post-processing for establishing the 

conclusions. In this paper we present a numerical study of a hypothetical silencer, made with the Ansys program 

using the finite element method. 

 

 

2. THEORETICAL FUNDAMENTALS 
 

For a fluid, under the hypothesis of mass conservation, linearized momentum equation, adiabatic process and 

homogeneous medium, using Hooke and Newton laws, the second order equation of acoustic waves [2] is : 
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In the case of an stady state armonic variation of the acoustic waves, the pressure can be written: 

tjePP  
                                                                                                                                         (2) 

where P  is the pressure amplitude, 1j , f  2  and f  is the frequency of acoustic wave. Under 

these conditions, equation (1) becomes: 

022  PkP                                                                                                                                         (3) 

This relation (3) is known as Helmholtz equation, where k is the wave number, defined by relation, 
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where   is the wave length,   is angular velocity and c is the sound speed. Considering the propagation of the 

acooustic wave without lossless energy and entering the notations:  

   
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   L                                                                                                                                                 (6) 

The equation (1) is written: 
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or, 
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The finite element matrices can be obtained starting from relation (8) by Galerkin procedures. Multiplying 

equation (8) by a virtual change in pressure and integrating over the volume of the domain [11] with some 

manipulation yields: 
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where,  N  is the element shape function for pressure,  N   is the element shape function for displacements, 

 eP  is the nodal pressure vector, and       ezeyexe uuuu ,,  is the nodal displacement component vectors. 

Applying the matrix operator  L  to the element shape functions, we can write: 

    TNLB                                                                                                                                          (11) 

Using relations (1)...(11) in the integral form of the lossless wave equation [12], the following equation  is 

obtained: 
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where  n   is the normal at the fluid boundary. Then the equation (12) is written: 
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 Relation (13) can be written in a matriceal form,   
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where the following notations were used, these representing the finite element matrices for acoustic analysis:  
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         = fluid mass matrix (fluid);                                                         (15) 

      dVBBK

V

TP
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       

S

TT
e dSNnNR 00       = coupling mass matrix (fluid-structure interface).                    (17) 

 

3. PROBLEM FORMULATION  
 

The considered exhaust drum (silencer) is one made of steel sheet, cylindrical in shape, with a diameter of 200 

mm and a length of 0.50 m; at the ends, at the level of the horizontal diameter, the inlet/outlet pipes with a 

diameter of 40 mm, the length of 0.10 m, with an eccentricity of 0.05 m are placed, as it can be seen in the 

Figure 1. The inside of the drum is free, without additional walls, without extensions of the inlet/outlet pipes. 

The propagation medium of the acoustic waves through the silencer is the air, having a density of 1.21 kg/m3, the 

acoustic impedance of 415.03 Ns/m3 and the speed of sound propagation 343 m/s. An acoustic pressure at the 

input of 100 dB and a frequency range of 0 ... 3500 Hz were considered. Considering an internal combustion 

engine with 4-stroke operation, we adopted for the numerical analysis the harmonic analysis in the considered 

frequency range. 
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Figure 1: Geometrical model of the exhaust drum 

 

 

4. FINITE ELEMENT MODEL 
 

The finite element model is shown in Figure 2. The model contains a number of 139791 finite elements and 

195889 nodes. The finite elements are tetrahedral type with 10 nodes/element, an quadratic one, as it can be seen 

in the Figure 3. The finite element dimension is 0.010 m for all elements. This finite element is named 10 node 

tet 221 belonging to Ansys finite element library. 

 

 
Figure 2: Finite element model of the exhaust drum 

 
Figure 3: The 3-D 10-nodes tetrahedral finite element 

 

Given the recommendation [2] regarding finite element size, to be smaller than 6  for linear finite elements 

and smaller than 2  for parabolic elements, the adopted dimension fulfills these requirements for the full 

frequency range, as shown in Table 1. 

 

Table 1: Maximum finite element sizes 

FREQUENCIES 
Frecvența [Hz] 

500 1000 1500 2000 2500 3000 3500 

Wave length   [m] 0.686 0.343 0.2286 0.1715 0.1372 0.1143 0.098 

F. E. 

Size  

[m] 

Linear 0.1143 0.0572 0.0381 0.0285 0.0228 0.0190 0.0163 

Parabolic 0.3430 0.1715 0.1143 0.0857 0.0686 0.0571 0.0490 
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5. RESULTS 
 

In the Figure 4, the acoustic pressure field [dB] is presented, inside along the exhaust drum, for an input of 100 

dB pressure at the frequencies of 500, 1000, 1500, 2000, 2500, 3000 and 3500 Hz respectively. 

 

     
      f = 500 Hz              f = 1000 Hz 

 

     
f = 1500 Hz              f = 2000 Hz 

 

          
f = 2500 Hz              f = 3000 Hz 

 

          
                              f = 3500 Hz                                    f = 3500 Hz; Horizontal longitudinal slide 

Figure 4: Acoustic pressure field inside the exhaust drum   
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    Figure 5: f = 1000 Hz; Vertical longitudinal slide           Figure 6: f = 3500 Hz; Isosurface representation  

                                                                                                                of the inside acoustic pressure field 

 

As we can see looking at the Figures 4…6, great turbulence occure inside the exhaust drum. These turbulences 

are cause of a strong variation in the values of the accoustic pressure field. As their effects are concerned, such 

turbulences are stronger when inside the exhaust drum some walls, with or without holes, exist. 

 

    
Figure 6: The points of pressure determination 

 

In the Figure 7, the curves representing the acoustic pressure versus frequencies, determined in those four nodes 

presented in the Figure 6 are shown. As we can see just the input acoustic pressure depend on the frequency; his 

maximum value occur at the frequency of 3545 Hz and its variation is nearly linear. For frequencies lower than 

2000 Hz, the most attenuation of the acoustic pressure occur. At the frequency of 3000 Hz, the acoustic pressure 

at the output point overcome the input acoustic pressure. 

 

 
Figure 7: Acoustic pressure variation versus frequency    
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Figure 8: Attenuation coefficient versus frequency 

 

By introducing the attenuation coefficient defined by ratio of input/output acoustic pressure (curves 1 and 2 from 

Figure 7), we see that the attenuation strongly depend on the frequency, as the Figure 8 shows. Beyond the 

frequency of 1000Hz the attenuation coefficient strongly goes down. 

 

 

6. CONCLUSION 

 

The numarical analysis by finite element method of the acoustic wave propagation in an exhaust drum is a very 

efficient way for the analysis of the its performance regarding the noise attenuation. Next to it, this way allow us 

to know what happens inside the drum. So, a large constructive solutions can be studied both for sound level 

attenuation and for a flow with acceptable hydrodynamic resistance. 

The studied case presented in this paper is a hypothetical one without inside walls, so with minimal  

hydrodynamic resistance. 

The numerical model presented in this paper is a model which can be improved by taking into account different 

constructive solutions beginig with thw geometrical shapes and dimensions and finishing with the present of the 

walls inside the exhaust drum. Of course, the numerical analysis has to be accompanied with experimental 

studies. 
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