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Abstract:  In the current paper we aim to evaluate the accuracy of a previously developed method to determine the frequency 

drop of a cantilever beam having an L-shaped damage with a well-defined position and size. The method is based on the fact 

that the deformation energy lost by reducing a section of the beam is proportional to the deflection of the same beam under 

own mass. By setting the boundary and initial conditions for the cantilever, fixed at one end and free at the other, we applied 

equations of motion for the entire structure based on the Euler-Bernoulli beam model. By using the relation between the 

frequencies and the deformation energy we obtained a correction term that allows us to calculate the natural frequencies of 

the cantilever beam having a reduced section based on the frequencies of the undamaged beam. The method is applied 

through a program developed in the Python language by our research team. The obtained frequencies for the beam with a 

reduced section are compared with does deducted with the help of the ANSYS simulation software for the beam with an L-

shaped crack. Tests performed to find the accuracy of the frequency estimates show that the results are very accurate and we 

concluded that this method can be used with confidence for modal analysis issues. 
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1. INTRODUCTION  
 

Engineering structures can be affected during operation by various types of damages as material fatigue, 

corrosion or overloading. In order to evaluate the safe functioning of possibly damaged structures, in the last 

years, methods of early damage detection have been developed based on their dynamic response. Cracks, even at 

an early stage, can reduce the ability of a structure to store energy due to loss of rigidity, which results in a 

decrease of its dynamic parameters [1, 2], like natural frequencies, modal shapes and damping ratio.  

Over time, various methods of detecting defects have been developed based on the measurement of modal 

parameters. Firstly, we distinguish the direct methods that consist in determining the frequency changes for a 

defect of known shape, position and size. Inverse methods rely on calculating the damage parameters, like crack 

length and location by using the frequency shift values. A comprehensive review of these methods is presented 

in [3]. Early attempts to detect damages by involving vibration-based methods are presented in [4-6]. More 

recent studies on detecting damages in beam-like structures were made in papers [7-9]. A successful detection of 

damages by measuring dynamic characteristics implies identifying small changes in modal parameters. In paper 

[10-12] a method to enhance the identification of natural frequencies is presented. In most literature the problem 

of detecting transversal cracks in trusses and beam-like structures is addressed. In more recent papers, complex 

damages have been taken into consideration too. These are delamination (longitudinal) cracks in composite 

structures [13,14]. In article [15], a method for determining the dimensions of L-shaped and inverted T-shaped 

cracks based on frequency measurements by using both direct and inverse methods is presented. Paper [16] 

describes a method of detecting the presence of cracks with different branch orientations in pipes by using the 

rotational spring model. 

In papers [17-22] we present studies made to find the effects of complex shaped damages, meaning L and T 

shaped cracks by means of the finite element and analytical methods. L-shaped cracks may occur in composite 

materials and are described as transversal cracks followed by a delamination oriented at a straight angle. In the 

current paper we aim to determine the accuracy of predicting the effects of an L-shaped crack on the natural 

frequency shift of a cantilever beam, by comparing the results obtained using FEM analysis with values obtained 

with the help of a stiffness reduction algorithm embedded in the Python language. 

 

 

2. THEORETICAL BACKGROUND 

 

The structure studied is a cantilever beam with its main dimensions illustrated in figure 1. 
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Figure 1:  The undamaged cantilever beam  

 

The cantilevers dimensions values as well as its physical properties are presented in table 1. 

 

Table 1:  Main dimensions and physical properties of the studied beam geometry 

Length 

L [mm] 

Width 

B [mm] 

Thick. 

H [mm] 

Mass 

density 

[kg/m3] 

Young 

modulus 

[N/m2] 

Poisson 

ratio 

[-] 

Tensile 

strength 

[MPa] 

Yield 

strength 

[MPa] 

Min. 

elongation 

[%] 

1000 50 5 7850 2·1011 0.3 470-630 355 20 

 

The damages considered in the current paper are described as two L-shaped cracks, one with the delamination 

component oriented to the right indicated as LR (figure 2) and the second oriented to the left indicated as LL 

(figure 3).  

              
Figure 2:  L-shaped crack oriented to the right            Figure 3:  L-shaped crack oriented to the left 

 

The positions and dimensions of the damages are presented in table 2. 

 

Table 2:  L-shaped crack main dimension and orientation 

Damage location 

x [mm] 

Damage interval 

a-b [mm] 

Delamination length 

LR or LL 

Damage depth 

a [mm] 

300 300-350 

50 1 

350 350-400 

400 400-450 

280 280-230 

330 330-380 

 

In order to test the reliability of the stiffness reduction method we compare the results obtained in the developed 

software with the natural frequencies obtained via ANSYS simulation software for the cantilever beam affected 

by the previously described damages. 

The Python embedded algorithm works by reducing the stiffness for the segment a-b of the cantilever, where the 

damage is presumed to be, but maintaining in the same time a constant mass of the beam, as shown in figure 4. 

 
Figure 4:  The cantilever beam with reduced section a-b 

 

For the analyzed cantilever beam the boundary conditions have been set and the dimensionless wave numbers 

for the first six modes of transversal vibration are given by: 

cos( )cosh( ) 1 0L L       (1) 

where α is the dimensionless wave number. 
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By determining the dimensionless wave numbers L  , for the cantilever beam, we can obtain the natural 

frequencies of the undamaged beam by applying relation: 
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The relation for calculating the normalized modal forms is: 
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The normalized modal curvature is determined with the help of relation: 
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   (4) 

The equivalent mass of the beam ech im  positioned at the free end is given by the relation: 

2 0

0
[ ( )]

L L
ech i i im mL x dx mL  

      (5) 

2 0

0
[ ( )] 0.25

L L
i ix dx       (6) 

From relations 2 and 5, the natural frequency of the undamaged beam is given by relation: 
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The coefficient of the strain energy for any vibration mode i, for the segment a-b, is given by the relation: 

2
( )

ba b
ii a

x dx         (8) 

From relation 8, we can derive for any vibration mode: 

20

0
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LL
ii x dx         (9) 

Knowing the relation between the natural frequencies and strain energy is i if U , the frequency for the beam 

with reduced cross-section becomes:                                                                                                                                                             
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Relation (10) can be expressed as:  
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3. THE DEVELOPED SOFTWARE 
 

The software developed for frequency estimation, nominated INTEGRATION and presented in figure 5, because 

it involves an integration of the strain energy of the part of the healthy beam, as well as the segment with 

stiffness reduction, which substitutes the damage positioned at a specific location. For conducting of 

calculations, the program requires the following steps, by entering the necessary parameters, as illustrated: 

a) Selection of the beam type, options are: cantilever, double-clamped, free-free and simply supported; 

b) Selection of the mode number. The program is capable of calculating the coefficients for the first ten 

modes of transversal vibrations; 

c) Setting the position and length of the reduced segment extremities; 

d) Setting the ratio between the height of the healthy beam and the height for the segment with reduced 

stiffness. 

As we can observe in figure 5, the program calculates the frequency correction coefficient a b
i
 for mode 

number 1 of vibration for a cantilever beam having a presumed damage of 1 mm depth starting from location 

a=300 mm extending to b=350 mm. 

By deducing the area a-b for the reduced stiffness segment and by integration of the function of the normalized 

modal curvature given in relation (4), the program plots the modal curvature of the beam for the selected mode 

of vibration and highlights the area where the modal curvature is disrupted by the stiffness reduction. In the same 
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time using relations (8) and (9), the frequency correction coefficients are calculated. In figure 6 we illustrate the 

third mode of transversal vibration. 

 

 
 

Figure 5:  Interface of the developed program                    Figure 6:  The interface of the curvature obtained 

 

The plotted normalized modal curvature defines the stiffness reduction section in the selected location, and by 

integration of the area the frequency correction coefficient is given. 

By knowing the undamaged beams natural frequencies and applying relation 11 with the help of the frequency 

correction coefficient, the beam’s natural frequencies values can be calculated. 

 

 

4. RESULTS AND DISCUSSION 

 

In order to prove the model is reliable and in consequence the INTEGRATION algorithm applicable, after 

calculating the natural frequencies for all damage cases presented in table 2, we compared the obtained 

frequency values with those given by the ANSYS software for the cantilever having the L-shaped cracks 

presented in figures 2 and 3. The errors obtained are presented in table 3 for the LR crack, and in table 4 for the 

LL crack. 

 

Table 3:  Errors obtained for the cantilever beam having an L-shaped crack oriented to the right 

Mode no. 

[-] 

Damage interval 

300-350 [%] 

Damage interval 

350-400 [%] 

Damage interval 

400-450 [%] 

Damage interval 

280-330 [%] 

Damage interval 

330-380 [%] 

1 1.37 1.07 0.82 1.49 1.19 

2 0.62 1.13 1.60 0.43 0.92 

3 -1.59 1.20 0.58 1.64 1.40 

4 0.30 0.13 0.97 0.61 0.07 

5 1.14 2.58 2.08 0.46 2.19 

6 10.95 8.77 7.33 11.10 9.56 

 

Table 4:  Errors obtained for the cantilever beam having an L-shaped crack oriented to the left 

Mode no. 

[-] 

Damage interval 

300-350 

Damage interval 

350-400 

Damage interval 

400-450 

Damage interval 

280-330 

Damage interval 

330-380 

1 1.37 1.07 0.82 1.49 1.19 

2 0.62 1.13 1.59 0.43 0.92 

3 1.59 1.20 0.58 1.64 1.40 

4 0.30 0.13 0.97 0.61 0.07 

5 1.14 2.57 2.08 0.45 2.19 

6 10.95 8.53 7.35 11.08 9.53 

 

As we can observe from tables 3 and 4, except for mode of vibration 6, the maximum error obtained is 2.58% for 

the damaged interval 350-400 mm. 
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The large error occurs for mode six because the cantilever reaches at this mode a shape as presented in figure 7. 

This reflects the vibration of the small element of the L-shaped crack, and that natural frequency is improper to 

predict the cantilever beam’s natural frequency for the sixth transverse mode.  

 
Figure 7:  Mode shape for the transverse vibration mode six of the cantilever beam 

 

Furthermore, in order to decrease the errors presented in tables 3 and 4 between the calculated frequencies using 

the described algorithm and the frequencies obtained by simulation, an empirically developed method can be 

applied. By including the supplementary occurred bending moments at the damage extremities which are 

proportional with the squared normalized modal curvature, we can calculate the correction coefficients a
ik  and 

b
ik  which we multiply with the obtained frequency correction coefficient a b

ik  to give more accurate frequency 

estimation. These are: 
2

1 ( )a
iik s a      (12) 

2
1 ( )b

iik s b      (13) 

where s is the severity of the crack. For a crack of depth a=1 mm we found the severity s=0.02 empirically, by 

applying a procedure described in [23]. In further study we aim to determine an algorithm to find these severities 

for different damage depths. 

The proposed coefficient is: 
a a b b

s i i ik k k k    (14) 

which considers the stiffness loss due to cross-section reduction between points a and b  respectively the 

supplementary bending moments at the damage extremities. Now, the frequencies can be predicted using a 

model introduced herein that involves the coefficient kS instead of the root square in relation (12). Tests made 

involving this model predicted the frequencies with a maximum error of 0.83% for the3 first five modes, as 

shown in table 5, which is a considerable improvement of the model that only involves the stiffness reduction. 

 

Table 5:  Errors obtained for the cantilever beam having an L-shaped crack  

Mode 

no. 

[-] 

Damage interval 

300-350 [%] 

Damage interval 

350-400 [%] 

Damage interval 

400-450 [%] 

Damage interval 

280-330 [%] 

Damage interval 

330-380 [%] 

LR LL LR LL LR LL LR LL LR LL 

1 0.11 0.11 0.09 0.09 0.07 0.07 0.11 0.11 0.10 0.11 

2 0.03 0.03 0.02 0.02 0.02 0.02 0.04 0.04 0.03 0.03 

3 0.05 0.05 0.02 0.02 0.01 0.01 0.04 0.04 0.04 0.04 

4 0.01 0.01 0.09 0.09 0.01 0.01 0.02 0.02 0.08 0.08 

5 0.28 0.28 0.83 0.81 0.66 0.66 0.02 0.02 0.70 0.6 

6 9.14 9.14 7.96 7.72 6.86 6.87 9.33 9.30 8.47 8.24 

 

Therefore, in order to obtain a more precise prediction of the natural frequencies of beams with complex cracks 

we propose a model which takes into account the supplemental strain energy at the damage extremities.  

 

 

5. CONCLUSION 

 

The paper proposes a model which makes a link between the effect of the stiffness loss and the natural frequency 

changes for beams with complex-shaped cracks that introduces correction coefficient kS.. First, an actual model 

that involves the stiffness loss coefficient a b
ik   developed previously by us for corrosion damage was tested for 

complex shaped-cracks. We found that for complex shaped-cracks, meaning LR and LL cracks, the error is up to 

2.58%. Because we observed important slope at the damage ends, we concluded that in order to have a more 

precise prediction of the natural frequencies of beams with complex cracks we need to take into account this 

reality. So, we introduced two coefficients which consider the supplemental equivalent bending moments at the 
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crack extremities (proportional with the local curvature) and a damage severity s found empirically in respect 

with the cross-section change. This model shows a maximum error of 0.83% which can be further decreased by 

analytically finding the damage severity for the specified cracks. 
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