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Abstract: The application of the Boundary Elemeny Method (BEM) to the computation of stress intensity factor (SIF) and the 

crack propagation angle in orthotropic materials is the aim of this paper  
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1. INTRODUCTION 

 

The rising expectations in the design of mechanical elements generate a need to incorporate, in more accurate 

ways, aspects that were previously solely approximated, or not even taken into consideration. Such is the case of 

the crack fatigue and propagation problems, both relevant when estimating the lifespan of a mechanical element 

that is subject to alternating loads, or that has initial cracks of certain extension. 

In Linear Elastic Fracture Mechanics (LEFM), the most used parameter in terms of determining the cyclic fatigue 

life or the unstable nature of a process of monotonic loads is the Stress Intensity Factor (SIF). Many work studies 

are dedicated to the presentation of this parameter's values in different situations and to the specific programs 

developed in order to obtain it both in finite elements and in boundary elements. 

However, the majority of such studies focus on cases in which the crack lips are almost completely open and 

smooth, respectively with a null crack friction coefficient. This case, that can result very relevant when it comes 

to a predominant one mode problems or in metals, becomes less relevant in mixed mode problems, especially in 

the anisotropic materials and composites. Due to the increasing use of this types of materials – like concrete, and 

especially fibre composites – this problem becomes one of unique importance and of great essence, if we take into 

account (1) the dramatic reduction that the consideration of such factors might lead to for the stress intensity factor 

and for the predicted cyclic fatigue life, and (2) the possible lack of crack propagation in situations in which a 

simple calculation of an open crack factor indicated a crack propagation. This is mainly the case of mode II cracks 

with increased friction between the crack lips. 

First, it is analyzed the 2-D elastic problem for orthotropic materials via the Boundary Element Method, the 

formulation and algorithms used in order to solve the contact problem between two solids with or without friction 

against boundary loads, using a multi domain method that allows us to handle the crack closure problem as a mere 

contact one by solely including the corresponding distribution at the crack edges. Secondly, the method used in 

order to determine the stress intensity factor that allows us to easily identify the existing singular tips and fracture 

modes is defined. Finally, various examples that allow us to verify the accuracy of the present formulation are 

described. 

 

 

2. FORMULATION OF THE BEM IN 2-D LINEAR ELASTICAL MULTI DOMAIN 

PROBLEMS 

 

The first equation of the BEM, in its direct formulation, is the well-known Somigliana's identity, which expresses 

the displacement vector ui (Q) of a point Q of a domain Ω as a function of the displacements ui (P) and tractions ti 

(P) of the boundary points of this dominium and the body forces Xi  
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where Uik is the Kelvin fundamental solution of the Navier’equations, Tik are tractions corresponding to those 

fundamental solutionof the Navier’s equations, Tikare the tractions corresponding to those fundamental solutions 

(the expresisions for the orthopic  case are included in the Appendix), and Cik can be expressed as:9  
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Figure 1 Geometrical mean of α1 and α2 

 

where Uik is the fundamental solution of the Navier equation, Tik are the tractions corresponding to the mentioned 

fundamental solution, included in the Appendix on the orthotropic case, and Cik can be expressed asformula(2.for 

isotropic materials, where α1and α2 have the geometrical meaning shown in Figure 1, δik is the Kronecker tensor, 

r the radiovector joining the points P and Q, n the outward normal to the boundary at point P and v the Poisson 

coefficient [for plane stress, this value must be modified by the well-known expression 





+
=
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Under some circumstances, the domain integral in (1) can be rewritten as the sum of two boundary integrals, in 

such a way that is possible to express the displacement of any point of the domain Ω in terms of only boundary 

integrals. In this work, however, no body forces have been considered, hence such integral disappears, and the 

equation (1) is directly expressed based on the boundary integral function.(fig1) 

If a boundary discretization with Ne elements is used, and the displacements and tractions are approximated inside 

each element in terms of nodal values, in the standard form of BEM, as (formula (4) 
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where Nnj is the number of nodes of the element j, and φk the shape function for 2-D continuous elements, then 

the eq (1) can be approximated by  
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For example, in the case of linear elements (two nodes per element), equation (4) can be rewritten as (formula 6) 
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If this expression is applied to each of the nodes and the corresponding boundary conditions are also included, it 

is possible to compute an algebraic linear system with [ )1(2 − Nnjj ] equations and unknowns, corresponding 

to the displacements and tractions of the boundary nodes. 

If the collocation point is not one of the nodes of the element along which the integrals in (5) are computed, a 

standard Gauss-Legendre quadrature is used. On the other hand, when it is placed from a node inside the adjacent 

element, singular integrands appear in the integrals of (5). In this case, the constants B are computed by using a 

quadrature with logarithmic weight function, while the constants A are computed, together with the free term Cik, 

by imposing a rigid body condition to the studied body. 

At each node two equations and six unknowns (two displacements, and two tractions for each of the elements to 

which the node belongs) can then be established. Most of the times, these tractions are expressed in local 

coordinates being necessary to transform the traction vector based on these coordinates. 

Ultimately, once the coefficient and independent term vector matrix is assembled, and the boundary conditions are 

applied, an algebraic system is obtained in the form (7) 

   Kx=f                (7) 

in which the unknowns, x, correspond to boundary displacements and/or tractions. The solution of this system is 

performed by any standard method, depending on its size. 

Once the unknown displacements and tractions have been obtained, the displacements of any internal point are 

also obtained by (1), while the stresses may be computed by applying the stress operator to it. 

Focusing solely on the contact problem formulation between to elastic solids, with their interface initially in a full 

contact, and normal for both solids. This is the only case of interest for this context. The non-traction condition for 

the mentioned point and with the data (tipology of zone) described in Figure 2 is expressed as 

0Nu                                                  (8) 

where uN is the projection of relative displacement between equivalent points (equal to the post-contact position) 

above normal. 

 
Figure 2 Tipology of zone 

 

The static boundary conditions, in the unilateral case proposed in this work and based on the Coulomb's Law of 

Friction like the one used here, can be expressed as formula 8 
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Besides that, the compatibility and equilibrium conditions are to be met between the two solids, in the points in 

which contact has been established. For this, the following different areas are defined in terms of the global 

boundary of each solid (Figure 2.) 

- No contact area (area no. 1) – the area that shall never establish contact 

- Candidate to contact area (area no. 2) – the area that still has not established a contact, that might establish one 

at a specific load level. 

- Slip area (area no. 3) – Nr =  

- Adherent area (area no. 4) – Nr   

- Welding area (area no. 5) – the contact area in which both solids are considered welded, thus recognizing the 

traction stresses. 

The contact problem between two solids, or better said between two domains of one body, as in this case, consists 

therefore in approaching the BEM equations to each contact solid, including implicitly or explicitly (in this case 

the second option was chosen) the boundary conditions (compatibility and equilibrium) in the contact area for each 

load level, as well as the boundary conditions in the other areas for each one of the aforementioned solids. 

The program that has been implemented includes linear, quadratic and quarter-point-singular-traction elements (– 

1/2 singularity), all of them with stresses and displacement continuity, as long as area no. 1 is checked for special 

nodes (nodes with excess or no unknowns), treated in an analogue mode in [2]. In case of friction, the friction 

coefficient is defined independently for each element, as it is possible to have independent contact areas between 

two solids with different friction coefficients. 

 

 

3. CONCLUSIONS 

 

It has been shown that the B.E.M. may be used to study the problem of propagating cracks in orthotropic bodies 

in a similar form to the previous works on isotropic materials. Also,the singular boundary elements firstly proposed 

by Blandford et.all. give very good results in the computation of stress intensity factors every coarse meshes, 

specially using a direct traction approach like the one presented by Martinez and Dominguez, being only necessary 

the modification of the fundamental solution of standard isotropic boundary element program. 

In most of cases, the method which gives rise to the best results in the computation of the SIF is the one that uses 

the singular traction approximation, using the nodal value of the singular traction approximation, using the nodal 

value of the singular node as the parameter which allows the obtention of the SIF, although it is very important the 

choice of the length of this singular element. 

Also the maximum circumferential stress criterium may be very easily included as a postprocessor in a standard 

B.E. code. In this case, was expected, the choice of shorter increments of the crack propagation effort and with 

only a few redefinitions of the mesh. 

In comparison with domain methods, the mesh needed to produce similar results are much simpler, which is always 

needed in a crack propagation problem. 
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