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Abstract: The boundary element formulation and the computer implementation of the 2-D contacvt problem with small 

displacements and strains between elastic anisotropic materials are presented in this paper.The contact program include 

isoparametric linear, quadratic,and quater-point-traction-singular elements. several contact zones with different friction 

coefficients berween the solids. Several exemples have been included, specially the computation od contact tractions in 

composite material plates with bolted joints or the influence on the stress intensity factor of the crack closure effects. 
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1. INTRODUCTION 

 
Over the last few years important advancements have been made in the inclusion of contact formulations into 

standard finite element, or boundary element programs. This last method seems to have proved advantageous in 

treating the linear contact problem, taht is the contact between lineart elastic solids with small displacements and 

strains, as occurs for instance along the crack lips of elastic bodies. 

The formulation of the BEM is primarily incuded for completeness, so are the formulation and algoritma used to 

solve  the contact problems between two solids. Finally several exemples are explained in detail, specially the 

study of contact traction in bolted joints in composite laminates. 

 

 

2. FORMULATION OF THE CONTACT PROBLEM BETWEEN ELASTIC PROBLEM WITH 

SMALL STRAINS AND DISPLACEMENTS      

 

The unilateral contact problem with small displacements and strains is just a linear elastic problem for each solid 

under non-linear and initialy unknown boundary conditions, along an unknown contact surface. These conditions 

depend on load level and the deometry of solids in contact. 

In this case, only the contact problem between two elastic solids will be considered. The extensionto multibody 

problems or the particularization to rigid base problems are straightforward once the above formulation has been 

obtained, regardless of the implementation and modelling difficulties impled. Let   be the boundary 

neighbourhood of a point P on the contact surface, and n=fA(t), n=fB(t) the equations that represent the undeformed 

surfaces for both solids A, B along the contact zone, in a local coordinates system tangent-notmal to the surface 

c

A , 
c

B ,(if a small displacement problem is considered those equations must be essentially the same, and 

also similar to the equation of the final contact zonbe after the deformation 
c ) (Fig.1) 

The non-penetration condition at point P is established as 

  0+ NN ud               (1) 

with dN the projection of the initial vector joining the equivalent points P, P’ (same position after the contact) along 

the normal to 
c , and uN the projection of the relative displacement beween the two points along the same 

normal. 
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Figure 1 Intermediate normal between the two solids 

 

It can shown  that conditions (1) is no more than the linerized non-penetration condition for large displacements 

along the coordinate t in the neighbourhood of the point P. This kinematic expression is then the approximated 

real condition and it is exact only when both solids have the same normal at the points P and P’ which remain 

fixed along the contact process, and the relative displacement has the direction of that normal. When the normals 

to both solids are orthogonal, the error is maximum, even marking is possible to violate the non-penetration 

condition. However, cases close to this are unreal in practical in practical small displacement contact problems. 

The static boundary conditions, in the unilateral case, wich a Coulomb friction law, as the one considered in this 

paper, can be expressed as  

 0N        N   with μ the friction coefficient                         (2) 

The direction N that has been used to project the displacements and tractions in order to impose the boundary 

conditions , is the average between the two normals to both solids in correspondiong boundary nodes   (Fig.1) 

Besides those kinematic and static conditions for each domain, the equilibrium and compatibility conditions 

between both solids in both solids must be fulfilled along the contact zone. In order to do this, different zones 

along the boundaries are defined (Fig.2): 

- Out of contact zone (zone 1). It is the one that is never in contact; 

- Candidate to contact zone (zone 2). It is the one which is not in contact yet, but can be cantact for a certain 

load level; 

- Sliding zone (zone 3), N =  ; 

 
Fig2.Contact zones 



61 
 

- Adhesive zone (zone 4), N  ; 

- Welded zone (zone 5). It is really a contact zone, but an interface between two domains, but has been included 

as a contact zone in order to generalize the program including the possibility of bilateral contact problems 

with zones under tension. 

The contact problembetweem two solids consists then in establishment of the BE equations for each of the solids 

under contact, including implicity or explicity thr boundary conditions (equilibrium and compatibility) along the 

contact region for each load level, and the standard boundary regions. 

 

 

3. TYPES OF ELEMENTS AND NODES 

 

The studie that implements the above formulation includes linear and quadratic isoparametric and singular 

traction quater-point continuous elements, with  coner nodes in zone 1 being treated as in Alarcon et all1. For 

friction problem a different friction coefficient can be defined for each element so that different friction 

properties.  

The shape functions for linear and quadratic isoparametric elements are well-known, while for singular storage 

is not needed since all the integration constant are included in the   complete matrix and their positions also 

remain unchanged. This method can be implemeted very easily in a standard BE code. 

Here this second option has been chosen, while, use the first one. The reasons shown above can be 

supplemenred by the fact that an adequate positioning of the unknowns and equations can be used in order to 

reduce the number of them that have to be triangularized at each step. 

As a conclusion, it can be said that both approaches are almost equivalent with respect to the CPUand the 

memory needed, but the one used here is simpler with respect to the assemblage and more difficult with regards 

the solving process. 

The first step to be taken, after having selected the method, is a static condensation process, in order to 

eliminated the unknowns corresponding to the nodes out of the candidate to contact zone (node 11).  If a 

standard multidomain BE method is used for both bodies, this static process can be writen as: 

 
S

L

S

C

S

LC

S

L

S

LL VxKxK =+                                                 (3) 

 
S

C

S

C

S

CC

S

L

S

CL VxKxK =+  

with S=A, B; xL unknowns to eliminated, and xC the corresponding to the candidate to contact zone. 

Equations (3) can also be expressed as  

 
SS

C

S VxK =                                                                                                                                  (4) 

Each of matrices KS is a 2n x 6n matrix. with n number of nodes in the C zone (2 integral equations for each 

nodes as a collocation point for each solid, and 6 unknowns for each node;2 displacements, u1, u2; and 2 traction 

for the two elements to which it belongs, σant, τant, σpos and τpos). 

Finnaly, 8 additional equations per equations per contacting node have to be included, which correspond to the 

contact matrix KAB and which depend on the type of node. For instance for node type of node type 44 with 

continuous nornal, they are 

 
BA uu 11 =       

BA uu 22 =        
A

pos

A

ant  =  

 
A

pos

A

amt  = B

ant

B

pos  =
   

B

ant

B

pos  =                                                                                                     (5) 

 
B

pos

A

ant  =         
B

pos

A

ant  =  

The structure adopted for matrix and vector of unknowns is shown in (Fig.3) the matrices KA, KB, and KAB being 

the only ones stored. 
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Fig.3.Structures of the system of equations 

 

With respect to the solution method, the one used here is a standard Gaussian elimination scheme with row 

pivotting and with a pretriuangularization of the matrices KA and KB, or KAB, which remain unchanged throughout 

the proces.With this, only a system of 5nx6n equations,(4nx4n in the first approach described before if the 

continuity of tractions is assumed), has to be triangularized for each  increnent step. 

 

 

4. CONCLUSIONS 

 

It has been shown that the B.E.M. may be used to study the problem of propagating cracks in orthotropic bodies 

in a similar form to the previous works on isotropic materials. Also,the singular boundary elements firstly proposed 

by Blandford et.all. give very good results in the computation of stress intensity factors every coarse meshes, 

specially using a direct traction approach like the one presented by Martinez and Dominguez, being only necessary 

the modification of the fundamental solution of standard isotropic boundary element program. 
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