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Abstract:  Spindle system is one of the most important part of a machine tool, its dynamic characteristics directly affect the 

cutting ability of the whole machine. Thus, the machining performance can be raised remarkably by improving the dynamic 

stiffness of the spindle system. Traditionally, the vibration of mechanical systems are damped by attaching an absorber to the 

original system. The engineering literature contains a large number of papers on many aspects of this subject. This paper, 

which focuses on the aspect of the problem, discusses the design of optimun vibration absorber for linear damped system. 

The results are presented for many combinations of system parameters as well as for many input frequencies. 
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1. INTRODUCTION  
 

The performance of machine tools and mechanical systems in general can be substantially improved by 

increasing dynamic rigidity. 

For a time-invariant linear dynamic system whose behavior is described by the equation 

          FxKxCxM =++                                                                  (1) 

dynamic stiffness K j( )  is defined, by analogy with static stiffness, as the ratio between the Fourier 

transform of the input quantity and the output quantity 
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where is the frequency transfer function, it is dynamic failure (compliance). 

where W j( )  is the frequency transfer function, C j( )  it is dynamic failure (compliance). 

The amplitude of compliance, assuming that SE has only one mode of motion of its own, is A( )  
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To reduce the amplitude, A( ) , one can intervene in the sense of increasing the parameters k and c and in the 

one of decreasing the equivalent mass m. In this paper we choose the way to increase the dynamic rigidity by 

increasing the dampings in the elastic structure. This is done by attaching an auxiliary mass absorber that will be 

optimally tuned. Details on the types of absorbers used in the construction of machines and the location can be 

found in the paper [1]. Two constructive solutions that recommended for frames, housings, etc. are shown in fig. 

1, wherein 1 is the vibratory structure, 2 is the auxiliary mass and 3 is the rubber element. 

 
Figure 1 [1] Two constructive solutions 

 

In the dynamic models of Fig. 1-b, d, related to the constructions from fig.1-a, c, we will also consider the 

damping c1 from the elastic structure with the equivalent mass m1. With the help of this model, important 

qualitative information can be obtained on the optimal design of vibration absorbers for linear systems. 
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2. THE OPTIMAL DYNAMIC ABSORBER 
 

The problem of designing an optimal vibration absorber for damped linear systems has been studied by a number 

of authors. Most authors study the problem, in case of harmonic excitations, either by analytical methods [2], [5], 

or by approximating the analytical solution [4], and by numerical optimization method [6], [3], [7]. 

In this paper, the problem of determining the optimal parameters of the absorber, in order to reduce the 

amplitude of the main system response, will be addressed using the principles of optimization. We will formulate 

the problem as a nonlinear optimization problem. Solving it is done with a quasi-Newtonian relaxation method, 

using the search algorithm of BFGS - Broyden, Fletcher, Goldfarb, Shanno, for which I wrote a program in the 

language MATLAB. 

The dynamic equations, written in matrix form, for the whole system (primary and secondary) are 

 fyKyCyM =++                                                                     (4) 

where 
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If we enter the notations 
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we will obtain the dimensionless amplitudes of the main and secondary system 
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3. FORMULATION OF THE OPTIMIZATION PROBLEM 

 

We formulate the problem (7) of optimal shock absorber design as a non-linear programming problem: to 

minimize the objective function )(xf  with restrictions of equality and inequality 
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Its values for  and 
1

  which the numerical calculations were made, as well as the optimization results are 

presented in tables 1 and 2.  

The variations according to the ratio of masses,   , of the values ( ) 11max kFY , of the optimum of the 

frequency ratio r  and of the optimum of the damping factor 2  are shown in Fig. 1, 2, 3, 4. 

 

Table 1: Optimization results 

                                                                    r  

                                           1=0.05               1= 0.1              1= 0.15 

            5.0000e-002        9.3533e-001        9.1384e-001        8.8767e-001 

            1.0000e-001        8.8751e-001        8.6189e-001        8.3210e-001 

            1.5000e-001        8.4533e-001        8.1738e-001        7.8569e-001 

            2.0000e-001        8.0722e-001        7.7803e-001        7.4518e-001 

            2.5000e-001        7.7277e-001        7.4269e-001        7.0930e-001 

            3.0000e-001        7.4128e-001        7.1070e-001        6.7707e-001 

            3.5000e-001        7.1237e-001        6.8151e-001        6.4791e-001 
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            4.0000e-001        6.8570e-001        6.5471e-001        6.2134e-001 

                                                     
Table 2:  Optimization results 

                                   2                                                        max [Y1/(F/k1)] 

  1=0.05               1=0.1            1=0.15           1=0.05               1= 0.1              1= 0.15 

  1.4160e-001  1.4786e-001   1.5418e-001     4.1462e+000     3.0566e+000      2.4256e+000 

  1.9262e-001  1.9971e-001   2.0507e-001     3.3368e+000     2.6225e+000      2.1667e+000 

  2.2897e-001  2.3571e-001   2.4070e-001     2.9193e+000     2.3765e+000      2.0112e+000 

  2.5952e-001  2.6442e-001   2.7079e-001     2.6513e+000     2.2101e+000      1.9021e+000 

  2.8341e-001  2.8871e-001   2.9468e-001     2.4605e+000     2.0870e+000      1.8194e+000 

  3.0383e-001  3.0909e-001   3.1513e-001     2.3156e+000     1.9911e+000      1.7537e+000 

  3.2143e-001  3.2701e-001   3.3263e-001     2.2008e+000     1.9135e+000      1.6997e+000 

  3.3696e-001  3.4319e-001   3.4774e-001     2.1072e+000     1.8491e+000      1.6543e+000 
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4. CONCLUSION 

 

We notice that for given 1 we can reduce the amplitudes for both the main and the secondary system by 

increasing the mass ratio. Another conclusion to be drawn from the analysis of the results is that for a given mass 

ratio, by increasing the damping factor 1 , the optimum damping factor 2  increases while the optimal 

frequency ratio and the maximum optimal amplitude decrease. 

If the main system is poorly damped, for example 05.01 = , we can reduce the amplitude of the main system by 

75% using an auxiliary mass equivalent to 40% of the mass of the main system ( 4.0= ). 

The results presented in the paper, for the optimal values of the objective function are better than those presented 

in the papers [3], [4]. This is due to the optimization algorithm used. 

 

 



 114 

REFERENCES 

 

[1]  Chiriacescu, S.T., Vibraţiile maşinilor unelte, Editura Universitatii din Braşov, 1994. 

[2] Nagaev, R. F., Stepanov, A.V., Optimization of the damping factor of free oscillations for a two-mass 

system, Mechanics of Solids 14, 1979. 

[3] Ebrahimi, D.N., Optimum dynamic dampers for single degree of freedom system, Comunications in 

numerical methods, vol.3,1987. 

[4] Ioi, T., Ikeda, I., On the dynamic damped absorber of the vibration system, Bull. J.S.M.E.,21.1978. 

[5] Soom, A., Lee, M.S., Optimum design of linear and nelinear vibration absorbers for damped systems J. 

Vibration, Acustics, Stress, and Reliability in design, Trans, A.S.M.E.,105,1983. 

[6] Vanderplaats,G.N., Numerical Optimization Techniques for Engineering Design, Mc-Graww-Hill, New-

York, 1984. 
[7] Nicoara,D., Damped dynamic vibration absorber - a numerical optimization method, 

link:https://sites.google.com/site/icmsav2018/ https://sites.google.com/site/icmsav2018/. 
 

https://sites.google.com/site/icmsav2018/

