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Abstract:  This paper presents the method that highlights the damage pseudo-severity that exists in the damaged beam for a 

specific position of the damage by using the relative frequency shift obtained from natural frequencies values and compares 

it with the square of the second derivative of the vibration mode shape from the analytical calculation. The natural 

frequencies are obtained from the numerical method for a healthy and damaged beam. For three damage depth, the damage 

is considered at the clamped end and at a specific position. Finally, the results confirm that for each vibration mode, 

regardless of the depth of the damage, the severity is the same. 
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1. INTRODUCTION 
 

Methods to recognize the occurrence of damage by involving the analysis of vibration signals measured on the 

monitored structure require observing the modal parameter changes in the earliest state [1]. The principle of 

vibration-based damage detection is the following: when reducing the rigidity of one slice of the structure due to 

damage, the natural frequencies will decrease. This happened in different ways, depending on the damage type, 

location, and depth [2]-[4]. Thus, damages in form of transverse cracks affect the rigidity of the beam but also its 

dynamic behavior, by inducing changes in the mode shapes, modal curvatures, and natural frequencies [5]. In 

practice, measuring the natural frequencies is the simplest way to observe and quantify the alteration of the 

modal parameter because this measurement is made with simple and robust equipment [6]. However, it is 

necessary to use advanced algorithms to obtain accurate results when estimating the natural frequencies of beam-

like structures [7]-[9]. Once the changes in the natural frequencies occurred due to damage captured, numerous 

methods to find the damage location and depth can be used, including statistical methods [10]-[12] and artificial 

intelligence [13]-[17].  

In this paper we analyzed the frequency changes by using relative frequency shift which are occurring due to the 

appearance of a damage by comparing them with the strain energy loss express only by square of the second 

normalized derivative of the vibration mode shape. The paper introduces a new vision about the dynamic 

behavior of beams, aiming to show the correlation between relative frequencies shift changes and the mode 

shapes curvatures. 

 

 

2. NUMERICAL APPROACH 
 

Let’s start from definition of relative frequency shift (RFS), which is given in [18] as 

 U i Di
i

U i

f f
RFS

f

−
=   (1) 

where fU is the natural frequency of the healthy beam, fD  is the natural frequency of the beam with a transverse 

crack, and i=1, 2 … represents the vibration mode. 

 

Table 1:  Geometry and mechanical parameters 

L [m] B [m] H [m] E [N/m2]  [kg/m3]  

1.000 0.050 0.005 2x1011 7850 0.3 

 

For a cantilever beam with the geometry presented in fig. 1, and having the mechanical parameters (according to 

the ANSYS library for Structural Steel) presented in table 1, we consider in this study the first six vibration 

modes (i=1…6). 
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We calculated the natural frequencies of the healthy beam and that of the damaged beam by using finite elements 

method. The considered damage is along the whole width of the beam and is placed first at the clamped end 

(x=0), and the second time at x=0.2 m from the left beam end. For the depth of the damage a we consider three 

values, resulting: a/H=0.08, a/H=0.25 and a/H=0.5. 

The results of the natural frequencies for healthy beam, damaged beam and relative frequency shift for the first 

six vibration mode and three degree of damage depth located at x=0 and x=0.2 m are presented in tables 2 and 3. 

 

 
Figure 1:  Clamped beam with damage 

 

Table 2:  Natural frequencies for healthy beam and damaged beam with damage at x=0 

i 1 2 3 4 5 6 

fU 4.0899 25.6266 71.7545 140.6275 232.5200 347.4518 

a/H 0.08 

fD_0.08 4.0833 25.5867 71.6466 140.4229 232.1934 346.9804 

RFS0_0.08 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 

a/H 0.25 

fD_0.25 4.0493 25.3844 71.1070 139.4158 230.6148 344.7456 

RFS0_0.25 0.0099 0.0094 0.0090 0.0086 0.0082 0.0080 

a/H 0.5 

fD_0.5 3.8939 24.5276 68.9644 135.6711 225.0692 337.2993 

RFS0_0.5 0.0479 0.0429 0.0389 0.0352 0.0320 0.0292 

 

Table 3:  Natural frequencies for damaged beam with damage at x=0.2 m 

i 1 2 3 4 5 6 

a/H 0.08 

fD_0.08 4.0864 25.6264 71.7377 140.5431 232.4006 347.4064 

RFS0.2_0.08 0.0008 0.0000 0.0002 0.0006 0.0005 0.0001 

a/H 0.25 

fD_0.25 4.0685 25.6254 71.6537 140.1268 231.8321 347.1986 

RFS0.2_0.25 0.0052 0.0000 0.0014 0.0036 0.0030 0.0007 

a/H 0.5 

fD_0.5 3.9848 25.6213 71.3129 138.5827 229.8062 346.5043 

RFS0.2_0.5 0.0257 0.0002 0.0062 0.0145 0.0117 0.0027 

 

 

3. ANALYTICAL APPROACH 

 

The analytical approach takes into account the dependence of the natural frequency for the damage beam and the 

natural frequency of the healthy beam, severity and square of the normalized second derivative of the vibration 

mode shape 

By considering the relationship which define the changes of the natural frequencies for a damaged beam, 

presented in relation (2): 

( )
2

( , ) 1 ( ) ( )Di U i if x a f a x 
 = −  
 

 (2) 

where (a) is the damage severity, and 
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is the second normalized derivative of the vibration mode shape for the cantilever beam and i is the 

dimensionless wave number. 

For an established value of the damage depth, the damage severity can be expressed as follows: 

( ) ( )
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( )  = ( , )

( ) ( )

U i Di
i

U i
i i

f f x a
a RFS x a
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 
  (4) 

Figure 2, with black line, shows the square of the second normalized derivative of the vibration mode shape for 

the first six vibration mode of the cantilever beam. 

 

    

    

    
Figure 2:  Square of the normalized second derivative of the vibration mode shape 

 

By analyzing the figure 2 it can be observed that when x=0 we obtain ( (0)i  )2=1, but for x=0.2 m the square of 

the second normalized derivative of the vibration mode shape has smaller values (dashed red lines in figure 2). 

So, we have: 

( )
2
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( ) (0, ) (0, )
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
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  (5) 

And in consequence we can state that the RFS found at the fixed end is the damage severity. For x=0.2 m, we can 

write the relation: 

( )
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  (6) 

But, from relation (4) we can deduce that: 
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Relation (7) can get the form: 

( )
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Considering that ( )
2

(0) 1i  =  and substituting (0, )iRFS a  with ( )a  in accordance with relation (5), we obtain 

( )
2

*(0.2, ) ( ) (0.2) ( )i iRFS a a a  = =   (9) 

which we nominated the pseudo-severity of the beam. It is defined as the ratio between relative frequency shift 

for damaged beam when the damage is located at a given distance and when the damage is located at the 

clamped end for each vibration mode.  

To validate the results obtained with relation (9), we calculate the square of the second normalized derivative of 

the vibration mode shapes for x=0.2 m and from numerical simulation results dividing the pseudo-severity to the 

severity. These results are presented in table 3. 

 

Table 3:  Comparison of values obtained for the square of the normalized modal curvatures from analytical 

calculation and numerical analysis 

i 1 2 3 4 5 6 

Analytically  0.5263 0.0049 0.1559 0.4135 0.3605 0.0932 

FEM with a/H=0.08 0.5258 0.0047 0.1559 0.4125 0.3656 0.0964 

FEM with a/H=0.25 0.5261 0.0049 0.1557 0.4132 0.3611 0.0936 

FEM with a/H=0.50 0.5261 0.0048 0.1583 0.4126 0.3642 0.0933 

 

Analyzing the values from table 3, it can be concluded that for each mode of vibration, the same values of the 

square of the second normalized derivative of the vibration mode shapes are found, irrespective to the damage 

depth, if the correct pseudo-severity was used. This means that the pseudo-severity can be used with confidence 

to characterize a crack with a given depth and location. 

 

 

4. CONCLUSION 

 

Relative frequency shift that occurs due to a transverse crack. It was shown that the severity of the crack takes 

the same value for all weak-axis bending vibration modes. It is found from the way the capacity of the beam to 

store energy is diminished due to the crack. The severity is always calculated for the crack located at the beam 

slice that suffer the biggest curvature/is subjected to the biggest bending moment. It is sufficient to calculate the 

severity for a given crack because the boundary conditions do not influence this parameter.  

The pseudo-severity, which is actually the topic of this paper, depends on the position of the crack on the beam. 

Moreover, because the curvature at a given location on the beam is different for the different vibration modes, 

the pseudo-severity depends on the vibration mode number as well. The mathematical relation deduced herein to 

calculate the pseudo-severity is validated by simulations performed with a software dedicated for finite element 

analysis. 
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