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Abstract: We present a method for estimating the power spectral density of the stationary response of oscillator with 

a nonlinear restoring force under external stochastic wide-band excitation. If a non-linear mathematical model of the 

system under consideration is adopted, together with a random process model of the excitation, then one is faced with 

the problem of predicting the system response. Non-mechanical system are completely linear, but linearization 

around the equilibrium position is acceptable in many cases-at least within some range of deformation. Linearization 

is important because linear functions are easier to deal with. Using linearization, one can estimate function values 

near known points. The statistical linearization technique can also tackle a wide variety of problems and also 

provides approximate information on the frequency domain characteristics of the stochastic response. 
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1. SYSTEM MODEL 
 

Consider the following oscillator with a nonlinear restoring force component, exposed to the simultaneous action 

of n forces 1( )W t , 2 ( )W t ,… ( )mW t , where 
1
( )Wx t ,

2
( ),Wx t … ( )

mWx t  denote the effect of the forces on the system 

response, when the forces are applied separately. The ordinary differential equation of the motion can be written 

as 
.. .

( ) ( ) ( ( )) ( ),m x t c x t g x t W t+ + =             (1) 

where m is the mass, c is the viscous damping coefficient, W(t) is the external excitation signal with zero mean 

and ( )x t  is the displacement response of the system. The Fourier Transform is a generalization of the Fourier 

series. Strictly speaking it applies to continuous and aperiodic functions, but the use of the impulse function 

allows the use of discrete signals. The set of conditions that guarantee the existence of the Fourier transform is 

the Dirichlet conditions, which may be expressed as: the signal ( )x t  has a finite number of finite discontinuities, 

the signal ( )x t contains a finite number of maxima and minima and the signal ( )x t is absolutely integrable. 

Dividing the equation by m , the equation of motion can be rewritten as: 
.. .

( ) 2 ( ) ( ( )) ( )x t p x t h x t w t+ + =             (2) 

where w(t) is a zero mean stationary Gaussian white noise excitation. We can always find a way to decompose 

the nonlinear restoring force to one linear component plus a nonlinear component 

2 1
( ) ( ( ( ))),h x p x Q x t


= +           

 

(3) 

where   is the nonlinear factor to control the type and degree of nonlinearity in the system. We consider in this 

article the nonlinear factor ( )Q x  of the form 1
1 1 0( ( )) ( ) ( ) ... ( )n n

n nQ x t a x t a x t a x t a−
−= + + + + . The equation of motion, 

in this case, can be rewritten as: 

( ) ( ) ( ) ( )
.. .

2 2 1
1 1 0

1
2 ( ) ( ) ( ) ... ( ) ) ,n n

n nx t p x t p x t p a x t a x t a x t a w t


−
−+ + + + + + + =        (4) 

where 
2

c

pm
 = . 

Obtain 
.. .

2( ) 2 ( ) ( ) ( ),e e ex t p x t p x t w t+ + =
           

(5) 
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where ep  is the undamped natural frequency and e  is the critical damping factor. For the linear system 

e
e

p

p
 = . The difference between the nonlinear stiffness [1,2] and linear stiffness terms is 

( )2 1 2
1 1 0

1
[ ( ) ( ) ( ) ... ( ) ) ] ( )n n

n n ee p x t a x t a x t a x t a p x t


−
−= + + + + + −

           

(6) 

The nonlinear factor   controls the type and degree of nonlinearity in the system. The value of ep  can be 

obtained [3,4] by minimizing the expectation of the square error 
2

2

{ }
0

e

dE e

dp
= .                                                             (7) 

Because 

2 2 2{ ( )} ( ) ( ( ))xE x t x t P x t dx



−

= =  ,                                              (8) 

obtain 

( ) ( ) ( ) ... ( )

1

1
1 1 0

2 2
2

E x t a x t a x t a x t a

p p

n n
n n

e
x





   
+ + + +   

   = +
 
 
 
 

−
−

.       (9) 

with , 0.1,..., 0a a an n −  

The probability density function of the system, for a normal distribution is 

( ) .
2

2( )

22
e

P x

x t

x

x 


=

−

           (10) 

We have 

( ) ( ) ( ) ... ( )

( ) ( ) ( ) ... ( )
2

( ) ( ) ...
2 2

( )

1
1 1 0

2( )

22
1

1 1 0

2 2( ) ( )

2 22 2
1

1

2
1

E x t a x t a x t a x t a

e
x t a x t a x t a x t a dx

e e
a x t dx a x t dx

a x t

n n
n n

x t

xn n
n n

x

x t x t

x xn n
n n

x x

 

   



 

  
+ + + + =  

  

 
= + + + +  = 

 

=  +  + +

+ 

−
−

−


−

−

−

− −

 
+

−

− −



−



 

 ( )
2 2

2 2( ) ( )

2 22 2
0

e e
dx a x t dx

x t x t

x x

x x   

 
+ 

− −



−



      

(11)

 

For 0( ) .
w

S S ct = = , the standard deviation of ( )x t  is 

( ) 
2 0 0

2 1
1 1 0

2

2

( ) ( ) ( ) ... ( )
1

n nx e n n

x

S S

cp E x t a x t a x t a x t a
cp

 





−
−

= =
 + + + + 
+ 

 
 

.     (12) 

Using the Fourier transform [5,6] we obtain 
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1 1

2

2 2

2 2
2

2 2

( ) ( 2 ) ( )

( ) ( 2 ) ( )

.......................................................

( ) ( 2 ) ( )
m

e e e W

e e e W

m e e e W

x p p i F

x p p i F

x p p i F

    

    

    

−

−

−


= − +


 = − +





= − +

          (13) 

where 

F
 

.

( ( )) ( ),kkx t i x 
−

= , F ( ( )) ( )
kk WW t F = , 1,2,..., .k m=  

As the complex conjugates of these expressions are 

1

2

*
* *

1

*
* *

2

*
* *

( ) ( ) ( )

( ) ( ) ( )

........................................

( ) ( ) ( )
m

W

W

m W

F

F

F

x H

x H

x H

  

  

  

−

−

−


 =


 =




 =


          (14) 

the searched quantity is obtained as 

1 2

2 * * *

1 2 1 2

*
2 2 22 *

1 1 1
1

( ) [ ( ) ( ) ... ( )][ ( ) ( ) ... ( )]

( ) ( ) ( ) [ ( ) ( ) ... ( ) ( ) ( ).
i j

m m

m m m

j j W W Wn W W

j j i
j
i j

x x x x x x x

x x H F F F F F

      

       

− − − − − − −

− −

= = =
=


= + + + + =

= = + +  
    (15) 

The mixed products correspond to the cross-spectral density functions, or simply cross spectral 
( ), 1,... , 1,... , .

i jWWS i m j m i j = =   

The frequency response function of the system is given by equation 

2 21

( )
ek m c i

H
 


= − +

          (16) 

or 

( ) 1
1 1 0

2 2

2

( ) ( ) ( ) ... ( )
1

1 2
( )

n n
n n

x

E x t a x t a x t a x t a
m p p i

H
   

 

−
−

  + + + +  
= + − +  

  
  

    (17) 

Because the cross spectral density function can be expressed in terms of the cross-correlation function 

2

2

( ) lim ( ) ( ) , ,
i j

T

WW i jT
T

R W t W t dt i j 
→ −

= +           (18) 

obtain for the cross spectral density function 

2

2

2 ( ) lim ( ) ( )
i j i

T

i t i t
WW W W j i jT

T
S R e dt W t W t dt e dt  

 
− −

→− − −

 
 = = +
 
 

         (19) 

The cross spectral density function can be also written in the form 

2

2

2

2

( ) 2 lim ( ) ( ) cos

2 lim ( ) ( ) sin

r s

T

W W i jT
T

T

i jT
T

S W t W t dt d

i W t W t dt d

   

  



→− −



→− −

 
 = + +
 
 

 
 + +
 
 

 

 

       (20) 

The autocorrelation of the process W(t) can be evaluated as 
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2
1 1 1 2

2

1 2 1 2 2

2

1 1
1

( ) lim [ ( ) ( ) ( ) ( )

... ( ) ( ) ( ) ( ) ( ) ( )

... ( ) ( )] ( ) ( ).
j i j

T

W T
T

m
m m

m W WW

j i
j
i j

R W t W t W t W t

W t W t W t W t W t W t

W t W t dt R R

  

  

  

→ −

= =
=


= + + + +

+ + + + + + + +

+ + + = +



 

        (21) 

The variance [3] of the process W(t) can be written as 

2

1 1
1

(0) (0) (0).
j r s

m m

W W W W W

j i
j
i j

R R R

= =
=


= = +          (22) 

If the processes 1( )W t , 2( ),... ( )mW t W t  are statistically independent then the variance is obtained as 

1 2

2 2 2 2...
mW W W W   = + + . 

Because the response spectrum is real, obtain 

1 2 1 2 1 3 1

2

2

1 1
1

( ) ( ) [ ( ) ( ) ... ( ) 2Re( ( ) ( )... ( ))]

( ) [ ( ) 2Re( ( ))],

m m m

j i j

x W W W W W W W W W
m m

W WW

j i
j
i j

S H S S S S S S

H S S

       

  

−

= =
=


= + + + + =

= +      (23) 

where 

( ) 

2

2
1

1 1 0
2 2 2 2 2 2

2

1
( ) .

( ) ( ) ( ) ... ( )
1 4

n n
n n

e e

x

H

E x t a x t a x t a x t a
m p p



   


−
−

=
    + + + +   

+ − +   
   

    

   (24) 

For completely uncorrelated processes, we have 

( ) 0,
i jW WS i j =            (25) 

and the power spectral density of the response is 

2

1

( ) ( ) [ ( )
j

m

x W

j

S H S  

=

=  .         (26) 

The spectral density of the response is given by: 

( )

1

2
1

1 1 02 2 2 2 2 2

2

( )

( ) .

{ ( ) ( ) ( ) ... ( )
1 4

j

m

W

j
x

n n
n n

e e

x

S

S

E x t a x t a x t a x t a
m p p





   


=

−
−

=
   + + + +    + − +   

       


     (27) 

For ( ) 0,Q x = obtain the linear case: 

, , 0,e ep p   = = =        (28) 

( )
1

2
2 2 2 2 2 2

( )

( ) .

[ 4 ]

j

m

W

j
x

S

S

m p p





  

=
=

− +


         (29) 

 

 

2. THE NUMERICAL RESULTS 

 

For the spectral density of the excitations 
1 2

22W WS S N s= =  , 1m kg= , 36
N

k
m

= , 4
Ns

c
m

= , 17m −= , n=4, we 

will find the statistical parameters of function. 

We obtain   
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16 ,
k

p s
m

−= = 2 0,33
c

p
m

 =  = .        (30) 

For the variance of the process W(t), we obtains 
2 2 21,0110x m −=  .          (31) 

The undamped natural frequency for the linear system is 

2 (3 1)
1 6,329 .

16

2
2 2 1p p sx x

e
  



 
+ = + =

  
 

−      

                             

(32) 

The probability density 1( ) [ ]P x m−  are shown in fig. 1., for for 16 , 0,33.p s −= =  

The power spectral density response are shown in fig. 2., for various parameter values. 

The broadening of the first resonant peak is described very satisfactorily by the approximate solution. It should 

be noted that the presence of the 'extra' resonances becomes more evident for higher nonlinearities; for higher 

damping levels and a weak nonlinearity the higher resonances can almost disappear. 
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Fig. 1. The probability density 1( ) [ ]P x m−  for 16 , 0,33.p s −= =  
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3.  CONCLUSIONS 

 
This method has seen the broadest application because of their ability to accurately capture the response statistics 

over a wide range of response levels while maintaining relatively light computational burden. No general method 

is available at present to obtain the response probability density function and the power spectral density of a non-

linear system under a given arbitrary Gaussian random input. It should be noted that the presence of the 'extra' 

resonances becomes more evident for higher nonlinearities; for higher damping levels and a weak nonlinearity 

the higher resonances can almost disappear. The results with respect to the power spectral density demonstrate 
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another striking nonlinear response property; namely, the presence of a large amount of energy at low 

frequencies. Efficient equivalent linear systems with random coefficients for approximating the power spectral 

density can be deduced. The asymmetry of the nonlinearity is the cause for this phenomenon. The power spectral 

density of the response will not have a large spectral content at low frequencies and the skewness will be zero. 
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