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Abstract: In this paper we use the amount of heat generated, transferred and then exhausted during the combustion process
to calculate the amount of it used in generating power, evacuated through the cooling system and evacuated via exhaust
gases.
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1. FUNDAMENTAL DIMENSIONS AND INITIAL PARAMETER CALCULATION

As a work assignment, the Ford 1L EcoBoost M1DA engine (Figure 1) has been selected for analysis via the
energy balance method shown hereafter. It is a modern intercooled DOHC 3 cylinder turbocharged engine that
develops a peak power of 92 kW at 6000 rpm and 170 Nm torque between 1500 and 4500 rpm.
Using the methods described in the reference materials we calculated the fundamental dimensions of the engine
bore of 71.9mm and stroke of 81.9mm, both of which were rounded off. Per cylinder displacement of 0.33253
dmd, e=9.5 and A=1 were used to calculate the trace of the p-V diagram (Figure 2) and the pressure-crank angle
diagram. These were used to calculate the power, torque and consumption bands for the engine.

The initial parameters were also used in sizing and verifying the internal components of the engine along with
the complementary subsystems (oiling, cooling, alternator, etc.) using the methods shown in the reference
materials.

Figure 1 Engine pictured without cooling ystem
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Figure 2 p-V diagram

2. ENERGETIC BALANCE OF THE M1DA ENGINE

We start our analysis by breaking down the exhaust gas composition needed for the computation of the burnt gas
constant which is subsequently necessary in order to arrive at the specific heat characteristic of exhaust gases.
(Figure 3)

Afterwards, we calculate the fuel flow per cycle and cylinder which is used along with the Vibe method to plot
the speed and quantity of heat generated against crank angle during the combustion process by the quantity of
fuel revealed through the analysis of the exhaust gases. (Figure 4)

Through the differential expression of the first law of thermodynamics and knowing the fundamental parameters
of the engine, we can extract the apparent quantity of heat generated per crank angle degree. This is used to
retrace the p-V and heat release per crank angle diagram without cooling. (Figure 5, Figure 6) We also model
and trace the evolution of temperature and pressure during the combustion cycle. (Figure 7).

To arrive at the heat transferred to the main engine parts, we will need the average heat of said parts (Table 1),
the area of each part at every point in the combustion process and the global coefficient of heat exchange. The
global coefficient of heat exchange is calculated using Woschnis correlation. (Figure 8) [2}

Table 1: Average heat of parts in contact with the burnt gases

No. Part Temperature[K] Temperature[°C]
1 Piston 503 230
2 Valve head 383 110
3 Cylinder 393 120
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Figure 3 Specific heat variation of burnt gasses
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Figure 4 Speed and quantity of heat transfer
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Figure 5 Cylinder pressure evolution according to the law of heat transfer
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Figure 6 p-V diagram without cooling
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Figure 7 Evolution of pressure and temperature per cycle without cooling
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Variatia coeficientului de schimb termic dupa Woschni
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Figure 8 Fluctuation of the thermal exchange coefficient according to Woschni correlation

From previous calculated points, we can calculate and plot the heat transferred to each part in contact with the
combustion gasses which is then summed up to show the total amount of heat transferred to parts and then
dissipated through the cooling system. (Figure 9, Figure 10) We then use this to calculate the temperature per
cycle with cooling and use this to retrace the pressure per crank angle diagram (Figure 11) and the p-V diagram
(Figure 12) which are over layer with the previous ones. From these we can extract the quantity of useful work
performed by the expansion of the combustion gasses, that is used in determining the indicated power. This
along with the mechanical efficiency adopted is used to compute the effective power and work values. [11]
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Figure 9 Total amount of heat transferred to parts in contact with combustion gasses
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Figure 10 Temperature drop of combustion gasses due to cooling
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Figure 11 Cylinder pressure per crank angle diagram
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Diagrama indicata fara racire
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Figure 12 p-V diagram overlayed with cooling (blue), without cooling (red)

3. RESULTS OF THE ENERGETIC BALANCE CALCULATIONS

Knowing the heat dissipated through cooling Qr=565.32 [J/cycle], measuring the average temperature of the
exhaust gasses exiting the engine Tevmes=1110[K] , using the calculated specific mass of said gasses
mgy=0.00054[kg/cycle] and their initial temperature To=293[K] we can calculate the amount of heat removed
from the engine via the exhaust Qgy=489.598[J]. These values can be compared to the value determined

experimentally (Table 2, Figure 13)
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Figure 13 Visual representation of Table 2
Table 2: Comparison of calculated and experimental verification heat and power values
No Heat/Cycle Symbo | Monocylind | Monocylind | Polycylinder Percent
| er er
[Jcycle] [kW] [kW] %
1 Total heat delivered/cycle Qcc 1774.47 88.72 266.17 100.00
2 Heat removed by cooling and Qr 565.32 28.27 84.80 31.86
oiling
3 Heat removed by exhaust Qev 489.60 24.48 73.44 27.59
4 Effective mechanic work We 624.06 31.20 93.61 35.17
5 Work lost in friction Wi 110.13 5.51 16.52 6.21
6 Total Qverif 1789.11 89.46 268.37 100.82
7 Error -14.63 -0.73 -2.93 -0.82

The error of 0.82% is congruent with the domain of cyclic variation
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