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Abstract:  The paper presents the analytical relationship for the changes of the natural frequencies at the occurrence of a 

transversal damage on a continuous beam with three spans using the Euler-Bernoulli theory, regardless of the location of the 

damage on the structure. When the damage appears on the beam, the changes of the natural frequencies can be highlighted 

by the square of the mode shape curvature for any location of the damage on the structure. The paper exemplifies the 

changes in natural frequencies for two possible locations of the damage. 
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1. INTRODUCTION 
 

Vibration-based damage detection bases on the fundamental idea that when damage appears in a structure, 

changes appear in the geometry of the structure [1] and in their physical properties: stiffness, damping and mass. 

All these changes will be reflected in modal properties [2]: frequencies, mode shapes, modal curvatures and 

modal damping and can be easily detected. It was found that the methods based on the analysis of mode shape 

proved to be quite insensitive to incipient damage and by use of mode shape curvatures, these present an 

enhanced sensitivity to damage detection [3-5]. Advantages to use the modal shape curvature which represents 

the second derivatives of the mode shapes as features for damage detection methods are obvious. A first 

advantage lies in the content of the local information carried by the mode shapes and especially by their 

derivatives [6]. As a second advantage, lies in the low sensitivity to environmental effects of the mode shape 

than the natural frequencies. Discontinuities in form of transversal cracks affect the beam stiffness and 

consequently its dynamic behavior, by reducing the values of natural frequencies and changing the mode shapes 

and curvatures [7-8]. For effective damage detection it is important to assess as accurate as possible the small 

frequency changes [9]. The paper presents in analytical form the relationship that gives us the change of natural 

frequencies to the appearance of a transversal crack for a continuous beam with three spans, regardless of the 

position where the defect appears, by using the modal shapes curvature method. It extends an approach [10].of 

calculating the modal parameters for two-span beams. 

 

 

2. ANALYTICAL APPROACH 

 

From the literature it is known the characteristic function Wi(xi) or normal mode of span can be 

expressed generally: 

         iniiniiniiniii xaDxaCxaBxaAxW coshsinhcossin 
       (1) 

were, 

i = 1, 2, 3 represents the number of spans; 

Ai, Bi, Ci¸ Di are the integration coefficients; 

an is the eigenvalues; 

n = 1, 2, …, ∞ is the number of vibration mode. 
By applying the boundary conditions (2) for the characteristic points 1, 2, 3 and 4, on a clamped - hinged 

continuous beam with three spans (fig. 1) and after solving the system obtained from the boundary conditions [9-

11], results the normalized modal functions (3) that describe the mode shape of the structure. 
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with  11 ,0 lx  ,  22 ,0 lx  ,  33 ,0 lx  . 

For an undamaged continuous beam, of constant section, the natural frequency (4) can be expressed: 
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where, 

fn [Hz] is the natural frequency; 

an is the eigenvalues; 

E [N/m2] – Young’s modulus; 

I [m4] - moment of inertia; 

m [kg] – beam mass; 

L = l1 + l2 + l3 [m] – beam length; 

It is known that the deformation energy: 
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             (5) 

is directly proportional with the square of mode shape curvature and from the literature [5, 6, 7], the relation 

which permit the evaluation of the natural frequencies for a damaged beam (6) takes into acount also the square 

of mode shape curvature whose form is: 

 2"1 nnUnD Wff  
           (6) 

where. 

fDn [Hz] is the natural frequency for the damaged beam; 

fUn [Hz] is the natural frequency for the healthy beam; 

  is a coefficient for damage severity; 

Wn” is the normalized mode shape curvature, expre4ssed with relation (7). 
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  (7) 

It can be observed (fig. 1) that in the points where the deformation energy is zero, respectively in the inflection 

points of the modal functions (3), the second derivative of these functions are zero and the natural frequencies 

for the damaged beam (6) are equal to the natural frequency for the healthy beam [8, 9]. 

Taking into consideration the severity coefficient equal to the unit, the change of the natural frequencies for the 

three span continuous beam with a damage located anywhere on the entire beam, can be represented graphically 

(fig. 1) by the relation below: 

 2"1 Wff
nUn 

          (8) 
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Figure 1: The first six mode shape for the transverse vibrations (top) and natural frequencies evolution (bottom) 

for a three-span continuous beam with clamped - hinged ends which has a crack located at x/l=0.2 from the left 

end (left diagrams) and with a crack located at x/l=0.6 from the left end (right diagrams). 
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Figure 1 shows the normalized modal functions for the first six vibration modes for a continuous beam with 

three span, where the intermediate joints are placed at equal distances, respectively l1 = l2 = l3. Note that always 

l1 + l2 + l3 = 1. The beam sketch is illustrated under the modal functions, and the change of natural frequencies in 

case of a transversal damage or crack appears on the continuous beam (for any location of the damage) can be 

followed under the beam sketch. 

In the left column of figure 1 are highlighted the natural frequency changes for a transverse damage located at 

x/l=0.2 from the left end of the beam, and in the right column can be followed the natural frequency changes for 

a damage at x/l=0.6 from the left end of the beam.  

 

 

3. CONCLUSION 

 

Analyzing the changes of the natural frequencies for the first six vibration mode presented in figure 1, it can be 

concluded that the deformation energy or square mode shape curvature expressed by relation (7), along the entire 

continuous beam is different for each vibration mode. Thus, reducing the rigidity due to damage, the frequencies 

will decrease in different ways, depending on the damage location. This remark allows us to develop patterns 

able to characterize the effect of damage, to any location along the beam. 

Patterns that characterize the damage location are consequently derived by using the squared mode shape 

curvatures of the healthy beam. In this case, the location of the damage becomes an inverse problem [7] and the 

location of the damage on the beam can be found by interpreting the results of the frequency measurements for 

the healthy and damaged condition. 
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