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Summary
The Euler-Bernoulli beam elements presented in this paper are based on the
improvement of the accuracy of the finite element solution by increasing the
polynomial degree of the shape functions. This approach, called the p-version of
the finite element method has become more and more attractive in the last two
decades. It was shown in the literature, that the p-version for linear elliptic
problems with smooth solutions converges exponentially in the energy norm. In the
practical analyses, the p-version yields an accuracy which can hardly be obtained
by the classical h-version, based on the refinement of the finite element mesh.

The elements studied in this paper show very high convergence in buckling and
nonlinear analyses. The final result of the studies is a beam element with six degree
polynomial shape functions, which yields engineering accuracy in the practical
buckling and non-linear frame analyses with only one element per column.
Although this type of element introduces three supplementary non-nodal degrees of
freedom, the computational costs of the analyses are much lover than in the case of
the classical beam elements based on cubic shape functions.
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1. INTRODUCTION

In this paper a family of Euler-Bernuolli beam elements are presented for
stability and geometrically nonlinear structural analysis. In the nonlinear
analysis the updated lagrangean formulation is used. The developement of
the element equilibrium relations is based on the principle of virtual work.
The element has six degrees of freedom at the nodes and a number of
supplementary non-nodal displacements corresponding to higher order
bending modes. In the current reference system, the diplacement and force
vectors of the element are:



“Computational Civil Engineering 2006”, International Symposium 205

.)f,f,M,T,N,M,T,N()f,,f,f(

,)a,a,,v,u,,v,u()a,,a,a(
T

nge
T

nge

T
nge

T
nge





722211121

722211121





f

a 
(1)

Here nge is the total number of degrees of freedom of the element. The
incremental and virtual displacements will be noted by a and av. It is
advantegeous to use a reduced set of displacement increments, removing the
rigid body movement of the beam and using only strain-inducing
displacements.
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Where T
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1221 uuuur   r is the extension of the beam  and
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are the reduced slopes dv/dx. For small increments the rigid rotation of the
beam, can be expressed as: L)vv(Lv 1221   (figure 1).
Remark: Since the updated lagrangean formulation is used, on the current
configuration only the bending displacements are nonzero.
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Figure 1. Incremental displacements of the beam

2. FORMULATION OF THE ELEMENTS

2.1 The shape functions

The transversal displacements of the beam are defined with the help of the
shape functions. The first two functions are the conventional cubic shape
functions (but with vr=0 at the two ends). The next shape functions are
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hierarchical ones whitch give zero transversal displacements and slopes at
the nodes of the beam.
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Here 21 Lx . The polynomial order of these functions is up to
3-ngep  . The first derivative of (4) gives the slopes:
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Further derivation leads to the curvatures:
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The same relations will be used for the incremental and virtual quantities.

3. THE TANGENT STIFFNESS MATRIX

The equilibrium of the element in an incremental step can be expressed with
the help of the principle of virtual work.
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T
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where kt is the tangent stiffness matrix of the beam.
3.1 The stretching stiffness

In the incremental step, the bending and the stretching of the element are
coupled because, the shape of the beam in the current configuration is
curved. Since r is small and rr   (see figure 2.a), the axial length
increment due to the bending of the beam can be approximated by:
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The virtual work done by the total axial stretching is:
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Figure 2. Higher order axial effects

3.2 The bending stiffness

The virtual work produced by the bending is composed by a term resulted
from the moment-curvature part and a term given by the higher order effect
of the axial force as the work done by the moment of N on the rotated
infinitesimal element dx with the virtual rotation v  (see figure 2.b).
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In relation (10)
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Relation (11) can be evaluated symbolically. For example, for nge=9 (p=6)
the following matrices result:
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3.2 Transferring the current nodal forces to the new configuration

The nodal forces in the current configuration are (see figure 3):
TT

n )M,T,N,M,T,N()M,T,N,M,T,N( 21222111 f . (14)

The shear force T=(M1+M2)/L results from the equilibrium of the beam. In
the new configuration the forces N and T change their direction and the
shear force  has a new value T’=T+T. From the new moment equilibrium
of the current forces, retaining only the first order terms results:
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The variation of the nodal forces expressed in the current reference system
becomes:
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Figure 3. Transfer of the current nodal forces to the new configuration
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The forces (16) and the virtual displacements of the nodes introduce a new
virtual work term:
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where r = (-1 0 0 1 0 0 0 ...0)T and z = (0 -1 0 0 1 0 0 ... 0)T, such that
u21=rTa and v21=zTa.
Using relations (7), (9), (10) and (17), the tangent stiffness matrix of the
element can be written as:
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In relation (18)
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such that qr = Aa extracts the reduced bending displacement set from the
complete displacement vector of the element.

4. NUMERICAL EXPERIMENTS

4.1 Buckling of beams

Using the stiffness matrix (18) a convergence study was performed for the
known cases of buckling of beams subjected to axial force. Both h- and p-
refinements were used by dividing the beams and respectively increasing the
polynomial degree of the elements. In the figure 4, the variation of the
relative error exact

cr
exact
cr

approx
crr N/)NN(e  of the buckling force for the worse

case - the clamped-hinged beam is presented. The parameters of the
corresponding refinements are presented in the table 1.
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Figure 4. Convergence study for the buckling of a clamped-hinged beam

Table 1. Number of degrees of freedom for the beam buckling problem
Number of divisionsPolynomial

degree p 1 2 4 8 16
3 1 3 7 15 31
4 2 5 11 23
5 3 7 15
6 4 9
7 5
8 6
9 7

It can be observed that in the case of the same number of degrees of
freedom, the best results are obtained by the p-refinement.
4.1 Post-critical behavior of the Roorda frame

In the figure 5, the equilibrium paths are presented for six eccentric loadings
of the Roorda’s L-frame. This case is a classical example of asymmetric
bifurcation, where for some small imperfections (introduced here by the
eccentricity of the load) the post-critical limit load can be smaller than the
corresponding critical load of the perfect system. For example for

L.e 010 , the limit load is crmax P.P 8990  [1]. The result for this case
obtained by using only two p6 elements, without dividing the beams was

cr
p

max P.P 899061  .
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Figure 5. Equilibrium paths for the Roorda’s L-frame

5. CONCLUSIONS

In this paper high order beam elements are presented for stability and
geometrically nonlinear analysis of frames. The development of the
elements uses non-nodal displacements and hierarchical shape functions
with increasing polynomial degree for the bending of the elements.
Numerical experiments show a very high accuracy of the results. In practical
analyses, the element with polynomial degree six eliminates the necessity of
dividing of beams and leads to engineering precision of results.
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