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Abstract: One of the main problems in machining is the tool chatter that can 

be modelled as a time-delayed mechanical system. As a physical 
phenomenon, chatter represents the self-excited vibration that has as cause 

the interaction that exists between the machine structure and the cutting 
process dynamics. 
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INTRODUCTION 

One of the main problems in machining is the tool chatter that can be 

modelled as a time-delayed mechanical system. As a physical phenomenon, 
chatter represents the self-excited vibration that has as cause the 

interaction that exists between the machine structure and the cutting 
process dynamics. 

Chatter is strong connected with the stability of the mechanical system 
composed of the machine tool-work piece-cutting tool. Generally, chatter 

can be highlight through signal measurements during the cutting processes. 
The recorded data during machining offer a limited view of the phenomenon.  

Chatter is a dynamic phenomenon that is connection with stability loss 
during the stationary machining process and which is followed by large 

amplitudes of  self-excited vibration generated between the cutting tool and 
the work piece. 

The first studies concerning the machining stability were done in the 1950s 

and 1960s, by Tobias [1] and Tlusty [2]. They defined the so called 
regenerative effect that was accepted as explanation for machine tool 

chatter. 
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The stability of the machining process can be evaluate using the lobe 
diagrams expressed in depth of cut and spindle speed parameters. Based on 

stability lobes one can decide on optimal technological parameters to choose 
a machining regime without chatter. 

The stability study is based on some mathematical models and methods 
connected to the motion equations that are time periodic delay-differential 

equations. 

The used methods are different, mainly numerical methods, such as: 
analysing of frequency response functions [3, 4, and 5], discretization 

methods [6, 7], the iteration methods [8, 9], etc. 
1.MILLING DYNAMIC MODEL 1DOF 

The study of stability in machining involves defining a dynamic system and 

its motion equations. Taking into consideration that inside equations are 
dynamic parameters of mass, damping and stiffness it is needed to be done 

an identification of them. 
The used dynamic models are with 1DOF [10, 11, 12] or 2DOF [13, 14, 15] 

considering the parameters identified by experimental modal analysis 
method. 

The model with 1DOF is governed by the motion equation: 
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where m is the modal mass, c  is the modal damping, and k  is the modal 

stiffness.   

Modal parameters are to be estimated using the measured FRF of the 
machine-tool-workpiece system. 

The model described by the equation (1) is a linear one. In [16] it is 
introduced the processed damping force model, the damping force being 

expressed as: 
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where 
d

C  is the process damping coefficient, w  is the depth of cutting, 
c

v  is 

the cutting speed. 

The cutting force can be expressed as: 
 ( ) ( ) ( )F t Cw x t x t        (4) 

with the delay 60 /   , C  is a constant of cutting (cutting coefficient 

[16]), and   angular velocity of the cutting tool expressed in 
rotation/minute. Introducing (3) and (4) in (1) and taking into consideration 

the state space equation (2) it is obtained the new form, presented in [16] 
as: 
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The state space representation given by the equation (5) needs to be 

identified the modal parameters from (5). 
2.MODAL IDENTIFICATION 

Modal parameters of the cutting tool were determinate considering a set up 

made of the milling tool, one accelerometer type 4507Bx (Brűel&Kjær), an 
impact hammer type 8206-003 (Brűel&Kjær), and the Platform PULSE 12 

with modal analysis soft. The hit was done in the forward milling direction 
and the accelerometer was mounted in the same direction (Figure 1).  

 
a) 

 
b) 

Figure 1: Experimental set up: a) accelerometer position; b) hit direction  

The obtained FRF curves are presented in Figure 2a, and the obtained values 

are presented in Table 1. 
Frequency Response H1(Triaxial_X,Exitation) - Input (Magnitude)

Working : Input : Input : FFT Analyzer

0 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 5k 5.5k 6k

-240

-220

-200

-180

-160

-140

-120

-100

-80

-60

-40

[Hz]

[dB/1.00 m/N]

OVERLOAD

Frequency Response H1(Triaxial_X,Exitation) - Input (Magnitude)

Working : Input : Input : FFT Analyzer

0 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 5k 5.5k 6k

-240

-220

-200

-180

-160

-140

-120

-100

-80

-60

-40

[Hz]

[dB/1.00 m/N]

 

Coherence(Triaxial_X,Exitation) - Input

Working : Input : Input : FFT Analyzer

0 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 5k 5.5k 6k

0

100m

200m

300m

400m

500m

600m

700m

800m

900m

1

[Hz]

[ ]

OVERLOAD

Coherence(Triaxial_X,Exitation) - Input

Working : Input : Input : FFT Analyzer

0 500 1k 1.5k 2k 2.5k 3k 3.5k 4k 4.5k 5k 5.5k 6k

0

100m

200m

300m

400m

500m

600m

700m

800m

900m

1

[Hz]

[ ]

 

Figure 2: Experimental results: a) frequency respone function; b) Coherence values 

 



Table1. Data measured in experimental modal test 

No. Frequency 

Hz    

%     Real 

/m N    

Imaginary 

/m N    

Magnitude 

/m N    

Delta 

3dB 

Choerence 

1. 152.00  5.50  62.01 10  61.52 10  62.52 10  16.71  0.825 

2. 288.00  5.37  61.94 10  108.85 10   61.94 10  30.92  0.792 

3. 352.00  6.01  72.37 10   62.58 10   62.59 10  42.35  0.745 

4. 504.00  5.05  73.75 10   81.31 10  73.76 10  50.90  0.733  

5. 888.00  2.50  84.57 10   96.33 10  84.62 10  44.33  0.808  

6. 1112.00  2.68  85.30 10   88.67 10   71.02 10  59.65  0.906  

 

The values of the modal stiffness and modal mass, for a mode „r‖ can be 
calculate using the following relations [17]:  
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3.SIMULATION 

Based on the obtained data, presented in Table 1, it was considered the 6th 

cases where the coherence value is the best. For this case the data used in 
relation (5) are presented in Table 2. 
No 2C N m 

 
 n rad s     k N m    %     dC N m    rpm   

 

D mm    m kg    

1. 91.3755 10

 
6986.9  62.152 10

 
2.68  61,000  1,200  40  0.044  

 
The vibration simulation of the milling tool during machining is presented in 

Figure 3. 

 



Figure 3: Vibration simulation of the milling tool 

The time simulation was chose equal of 120 seconds. The simulation consists 

in script wrote in MATLA where was defined equatin (5) and its components, 
and a SIMULINK file where was solved equation (5). The the level of 

simulated amplitude is no larger than 2 mm.  

4.CONCLUSIONS 

 
Based on the state space equation presented in [16] it was done a 

simulation of the vibration level for a milling tool. The modal parameters 
were identified using a proper setup. The level of simulated vibration does 

not exceed the value of 2 mm. This value cannot be considered accepted 
considering that the machining has an imposed precision of the edges. 

One reason of this value can be the 1DOF model considered that take into 

consideration only the motion on forward direction and do not consider the 
effect on normal direction influence on forward direction.  
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