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Abstract: By using an analytical approach, the research paper aims to present a method for 

locating and classifying cracks in beam-like structures, made of steel. By applying known 

equations, the training data consisting of Relative Frequency Shifts (RFS’s) values are 

calculated for multiple damage scenarios considering transverse and branched cracks. After 

the RFS database is created, the MATLAB software is used to train a feedforward artificial 

neural network (ANN) that will be able to predict the crack’s location, type and evaluate its 

severity. The results show that the described model has a high accuracy in determining if the 

crack is in incipient state, or it has further penetrated the material and it also can predict the 

crack location in any of the two states.    

Keywords: transverse cracks, complex-shaped cracks, Relative Frequency Shift, artificial 

neural networks 

1. INTRODUCTION 

Structures can be exposed to different loads over time, thus being constantly 
subjected to varying conditions that can alter their intended function []. The 

most common case for structural failure is the presence of material fatigue 
cracks, caused by repeated loading, that are difficult to detect due to varying 

factors, like limited accessibility in the damaged area or because the cracks are 
very small, in an incipient state, making them hard to observe using local 

methods of evaluation [1].  
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Global methods of detecting defects, especially those that use the modal 

parameters of the structure, are becoming more promising [2, 3]. The 
presence of damage usually manifests itself as a stiffness reduction, thus 

altering the modal parameters of a system. The use of the natural frequency 
which is an inherent property of a structure offers multiple advantages for 

damage detection [4-6].  

The authors propose a method for evaluating transverse and branched cracks 
in steel beams by using the Relative Frequency Shifts (RFS’s) values of the 

structure. In the current paper, the authors have considered a steel cantilever 
beam, which can be affected by two damage types of different depths, i.e., a 

transverse crack, or a propagated crack starting from an incipient transverse 
damage with two branches oriented at 90° angle. A database is created using 

the RFS values as inputs for training the ANN which will predict the damage 
type, its severity and location with a high accuracy. 

2. ANALYTICAL APPROACH 

To generate the training database consisting of the RFS values for the 

cantilever steel beam affected by either transverse cracks or by T-shaped 
cracks, Fig.1, two known equations are applied. 

 
a      b 

Figure 1: A schematic of the two crack types; a – transverse crack, b – T-shaped crack 

If a transverse crack of known depth and location is considered, the 
mathematical relation for depicting the natural frequency fCi of the damaged 

structure is: 

  2

( , ) 1 (0, ) ( ) 
      

Ci i if x a f a x  (1) 

where, 

fi [Hz] is the natural frequency of the intact beam; 

γ(0,a)  [-] is the severity of the crack, positioned at the fixed end that can be 

determined by applying the method described in [7]; 

2

( ) 
 i x  [x/L] is the squared normalized modal curvature; 

If the damage takes a complex form, like the T-shape crack presented in Fig.1-

b, the rigidity loss is expressed as a stiffness loss coefficient [8], considering 
the ratio between the moments of inertia for the two cross-sections I and Ic: 
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Where the coefficient   
      are calculated using relation (3): 
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2.1. Generating the training dataset 

For the current study, we consider the transverse crack of depth a=1, 1.2 and 
1.4 mm with the related severities according to article [9]. Regarding the T-

shaped crack, the dimensions relative to Fig.1-b are: α=β=90°, LL=LR=25 mm 
with the Ic/I ratio according to a depth of a=1, 1.2 and 1.4 mm, i.e. Ic/I= 

0.512, 0.439, 0.373. 

The natural frequencies of the damaged beam having its main dimensions in 
mm, presented in Fig. 2, are generated using relation (1) for the transverse 

crack and relation (2) for the T-shaped crack. The cantilever is made of S355 
steel with elasticity modulus E=2.1*10^11 and density ρ=7850 kg/ m3. 

 
Figure 2: Main cantilever beam dimensions 

The training dataset consists of the input data that contain the RFS values for 

the first six weak-axis bending vibration modes, obtained by applying relation 
(4): 

 ( , )
( , ) ( , )


   i Ci

i i

f f x a
RFS x a f x a

fi
 (4) 

Table 1. Eigenvalues for the first four vibration modes 

Input RFS’s  Output   

Mode  

1 

Mode  

2 

Mode  

3 

Mode  

4 

Mode  

5 

Mode  

6 

 Type 

 

Depth  

a [mm] 

Position 

x [mm] 
0.0032 0.0001 0.0022 0.0029 0.0008 0.0002  0 1 39 
0.0032 0.0001 0.0022 0.0029 0.0007 0.0003  0 1.2 37 
0.0031 0.0001 0.0023 0.0029 0.0007 0.0003  0 1.4 40 

0.0002 0.0049 0.0242 0.0517 0.0684 0.0608  50 1 278 
0.0002 0.0047 0.0234 0.0505 0.0679 0.0621  50 1.2 244 

0.0002 0.0045 0.0225 0.0493 0.0674 0.0632  50 1.4 246 

The output of the dataset consists of the type of crack, which has the value 0 

for the transverse crack and 50 for the T-shaped crack, the crack depth a, and 
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the cracks position x in mm. A sample of the dataset containing the input and 

output values is presented in Table 1. 

 
3. Training the ANN 

After the RFS values are calculated using a position step of 1 mm along the 
length of the beam for each crack type and depth, the dataset is loaded into 

MATLAB and the necessary preprocessing steps are performed by splitting the 

dataset into input and output values. The architecture of the network is 
defined using the neural network tool (NNtool) module, as a feedforwardnet, 

considering two hidden neuron layers, each containing 30 neurons, as 
presented in Fig.3. 

 
Figure 3: ANN architecture 

The training process is configured by applying the Bayesian regularization 

algorithm which incorporates the relevant options and functions given in the 
training configuration. 70% of the data is used for training, 15% for testing 

and 15% for validation. During the training process, the performance on the 
validation set is monitored to avoid overfitting, which occurs when the network 

becomes too specific to the training data and performs poorly on unseen data. 

After successfully training the neural network, its performance is assessed 
using the test dataset. The network’s performance is evaluated from the 

graphs presented in Fig. 4. 

 

Figure 4: ANN performance 

Based on the graphs plotted in Fig.4, it appears that the network training is 
accurate and aligns well with the expected outcomes 
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4. Testing the ANN 

To test the accuracy of the developed ANN, modal FEM simulations [10] and 
experimental measurements [11] are performed. In the context of modal FEM 

simulations, the ANSYS software is used for obtaining the natural frequencies 
of the cantilever steel beam with dimensions specified in Fig. 2 both in 

undamaged and in various damage scenarios outlined in Table 2.  

Table 2. Eigenvalues for the first four vibration modes 

Scen. 

no. 

Position x 

[mm] 

Depth a 

[mm] 

Crack 

type 

Scen. 

no. 

Position x 

[mm] 

Depth a 

[mm] 

Crack 

type 

1 30 1 0 11 160 1 50 

2 112 1 0 12 363 1 50 
3 265 1 0 13 587 1 50 

4 322 1.2 0 14 872 1 50 
5 489 1.2 0 15 95 1.1 50 
6 601 1.3 0 16 113 1.1 50 
7 753 1.4 0 17 277 1.2 50 
8 852 1 0 18 489 1.3 50 
9 965 1 0 19 562 1.4 50 
10 80 1 50 20 802 1 50 

The experimental measurements are performed according to [11] for one 
transverse crack of a=1.25 mm depth located at x= 98 mm and a T-shape 

damage scenario with a depth of a=1 mm at location x=210 mm.  

5. RESULTS AND DISCUSSIONS 

By inserting into the ANN, the obtained RFS values for the FEM and 
experimental damage scenarios, we explore the outcomes of the research, 

presenting a detailed overview of the experiments conducted and the 
corresponding results, in Table 3 for the FEM generated scenarios and in Table 

4, the experimental ones. 

Table 3. Results obtained for the FEM damage scenarios 

Known parameters Predicted 

Scen. 

no. 

Crack position 

x [mm] 

Crack depth 

a [mm] 

Crack 

type 

Crack position 

x [mm] 

Crack depth 

a [mm] 

Crack 

type 
1 30 1 0 31.55 1.29 0 

2 112 1 0 111.43 1.11 0 
3 265 1 0 267.48 1.19 0 
4 322 1.2 0 319.62 1.21 0 
5 489 1.2 0 489.18 1.17 0 
6 601 1.3 0 597.95 1.24 0 
7 753 1.4 0 750.58 1.20 0 

8 852 1 0 849.98 1.01 0 
9 965 1 0 976.11 1.16 0 
10 80 1 50 78.97 1.26 50 
11 160 1 50 211.36 1.19 50 
12 363 1 50 368.54 1.27 50 
13 587 1 50 525.33 1.36 50 
14 872 1.5 50 777.28 1.12 50 

15 95 1.1 50 94.31 1.22 50 

16 113 1.1 50 113.78 1.15 50 
17 277 1.2 50 319.84 1.30 50 
18 489 1.3 50 420.96 1.21 50 
19 562 1.4 50 580.02 1.17 50 
20 802 1 50 808.84 1.27 50 
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Table 4. Results obtained for the experimental damage scenarios 

Known parameters Predicted 

Scen. 

no. 

Crack position 

x [mm] 

Crack depth 

a [mm] 

Crack 

type 

Crack position 

x [mm] 

Crack depth 

a [mm] 

Crack 

type 
21 310 1,25 0 310.44 1,20 0 
22 210 1.5 50 186.02 1.22 50 

 

6. CONCLUSIONS 

The paper presents an analytical method that can be used for creating a 

damage signature database, composed of the RFS values for a cantilever steel 
beam that is subjected to two types of damages, i.e., transverse cracks and T-

shaped cracks. By using the calculated database, it is possible to train an 
artificial neural network that can predict the location, type, and severity of the 

crack. The analysis performed in the current study illustrates the precision and 

flexibility in applying analytical relations for training complex learning models. 
From the presented results, both from the FEM scenarios, as well as from 

experimental ones, it is demonstrated that the presented methods are reliable 
for damage evaluation in simple structures. By considering the length of the 

beam, which is 1000 mm, the largest position prediction error obtained is 
9,47% for FEM scenario number 14 and the smallest error is 0.02 % for FEM 

scenario 5. Also, regarding the position error, the results obtained for the 
experimental measurements are also promising, obtaining errors of 0.04% for 

scenario 21 and 2.4% for scenario 22. The reason of the larger error in case of 
scenarios 14 and 22 is the fact that the depth of the crack is outside of the 

training data, which was set to a=1.4 mm. Concerning the crack type and 
depth estimations the results are predicted with a high accuracy. 
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