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Abstract: The paper presents the dynamic model using multidimensional Laplace transforms 

that are applied on time and length coordinate. This approach is very useful to analyze the 

dynamics, stability of the model of REHEX using linear equations in Laplace domain. More 

important is the fact that the system no longer needs to be re-integrated if the input variables 

are changing. The solution is presented for counterflow regenerative heat exchanger. 
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1. INTRODUCTION 

The regenerative heat exchanger (REHEX) is a heat transfer device that is used 

in all refrigerating type installations with mechanical vapor compression. It is 
used both in the field of industrial cold, in the field of commercial and domestic 

cold. The REHEX is part of the category of heat transfer devices with no phase 

change and aims to produce total or partial heat regeneration of the vapors of 
a refrigerant. 

Refrigerant vapors, which enter the REHEX, are in most cases superheated. 
Due to the heat given to the cooling fluid, these vapors cool down to the 

saturation state corresponding to the condensation temperature. 

Subsequently, the condensation of the saturated vapors takes place and, 
finally, a subcooling of the condensed liquid after traversing the REHEX. All 

these transformations, which take place for the refrigerant vapor part, 
determine for this type of device the consideration of 3 distinct zones, but in 

strong heat transfer interaction in between. 

2. MATERIALS AND METHODS 

The model of the regenerative heat exchanger (REHEX) with countercurrent 
circulation is considered as a dynamic system with distributed parameters 

(Fig.1). That approach involves system description with the help of 
conservation equations, mass and energy, considering in this case both the 

temporal variable and the spatial variable. The spatial variable for this type of 
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device is considered the length in the dominant flow direction of the cooled and 

heated fluid. 

The modeling assumptions that were used for the REHEX model are: the 
device is double pipe type, the liquid refrigerant flows through the inner pipe 

and the refrigerant vapors flows through the space between the inner pipe and 
the jacket, refrigerant vapors and liquid are considered saturated, the jacket is 

considered perfectly thermally insulated, heat transfer is considered 
predominantly radial, the axial heat transfer is neglected, vaporization does 

not occur in the pipes with liquid refrigerant. 

 
 

 

 

Figure 1: The element of length dℓ for the counterflow REHEX 

For the first step of modeling, we consider the energy conservation equation in 
differential form for an element of infinitesimal length dℓ: 
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 where M represents mass [kg],  ̇ is mass flow [kg s-1], cp is the specific heat 

[kJ kg-1 K-1], A is the heat transfer area [m2], ℓ is the current length of the fluid 

[m],  is the convection heat transfer coefficient [W m-2 K-1],  is the 

temperature [K]. The subscripts for variables in the above equations refers to 

liquid (L), vapors (V) and pipe wall (Per). 

Since the heat transfer takes place between the refrigerant in the liquid phase 
(L) and that in the vapor phase (V), without a phase change, it can be 

considered, with a fairly good approximation, that the variation of the 
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convection coefficients is influenced only by the fluid mass flow. Thus, this 

dependence can be presented in the form: 
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 where L0, v0 are the initial values of the convection coefficients. 

The linearization of the expression (2) is possible because small variations of 
the mass flow rate around a nominal value are considered in the dynamic 

model simulation, and it is allowed to neglect the higher order terms obtained 
by the Taylor series development of the convection coefficient depending on 

the variation of mass flow rate. 

Next step of modeling is the linearization of the equations (1) around the 
nominal operating regime, that allows obtaining a form of the system of 

equations depending on the variations of the state and input quantities. The 
problem that occurs is that two independent variables appear, time and 

coordinate, but also the partial derivatives in relation to them. The resolution 
of this "impediment" can be solved analytically by using integral 

transformations like Laplace transform. 

More precisely, the multidimensional Laplace transform is used. If we note in 
the Laplace domain, the image [1,3] of the time variable t with p, and the 

image of the coordinate variable ℓ with s. 

2.1. The Laplace transform according to the time coordinate 

Applying first, the Laplace transform according to the time coordinate to the 

system (1) results: 
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 where by Ti are the coefficients of the derivative with respect to time of the 
state variables were noted, and ai, bi, ci are the coefficients that were obtained 

by normalizing the system (1): 
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Thus, the transition to the Laplace domain of the system of differential 

equations was achieved, the system becomes linear in the variable p (image of 
the time variable). 

2.2. The Laplace transform according to the length coordinate 

Applying second, the Laplace transform according to the length coordinate to 

the system (3) results: 
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Finally, is obtained a dependence of the variation of the state variables 

according to s and p Laplace variables. 

The system (5), obtained in the Laplace domain, is a system of linear 
equations where the state variables, the temperature variation of the liquid 

agent and vapors, depend on the inlet temperatures and agent flow rates. 
Solving this system of linear equations is done by successive substitutions. 

Thus, it obtains the variation of the state quantities depending on the input 
quantities in the domain (s,p). Obtaining the solution in the initial domain 

time-length (t,x) is achieved by applying the inverse two-dimensional Laplace 

transform [3]. 

The analytical solution for L(t,x) and V(t,x) obtained by the inverse Laplace 

transform is quite complicated, but more important fact is it describes the 
temperature field for the REHEX in dynamic mode and depending on the 

dominant coordinate. 

3. TRANSFER FUNCTION MODEL 

It is more convenient to describe this solution in the form of transfer functions. 
By definition21, the transfer function represents the ratio between the Laplace 

transform of the output quantity and the Laplace transform of the input 
quantity. The representation of the solution of the system of differential 
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equations (5) in the form of transfer functions for the regenerative heat 

exchanger with countercurrent flow is: 

  v(s,p)= AA1 m
•

v(0,p)+AA2m
•

L(0,p)+AA3L,in(0,p)+AA4 v,in(1,p)  

  L(s,p)= BB1 m
•

v(0,p)+BB2m
•

L(0,p)+BB3L,in(0,p)+BB4 v,in(1,p)  (6) 

 where: AAi, BBi, are the transfer functions of the output quantities, in our 

case the variation of the vapor outlet temperature v and the variation of the 

liquid outlet temperature L, in relation to the input quantities: the variation 

of the liquid mass flow rate m• L, the variation of the vapor mass flow rate m• V, 

the variation of the temperature of the liquid at the inlet L,in, and the 

variation of the temperature of the vapors at the inlet of the exchanger V,in. 

    The AAi, BBi coefficients have the following expressions: 
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and are expressed as transfer functions only as a function of the complex 

variable p, since the inverse Laplace transform after the variable s has already 
been applied. 
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The quantities s1, s2 represent the solutions of the equation obtained if we 

consider as the determined characteristic of the system of equations (6) to be 
zero. These solutions of the equation (called characteristic equation) are called 

the poles of the dynamic system in Laplace coordinates. These values are very 
important for the analysis of the system, because depending on their value, an 

analysis is made regarding the stability of the dynamic system [2-7]. 

The value of the poles of dynamic system is: 

 s1,2 = - 
a1B(p)-b1A(p)

2a1b1
             (8) 

where  ={[
a1B(p)-b1A(p)

2a1b1
 ]2+[

A(p)B(p)-aa1bb4

a1b1
 ]} 

For example, the coefficient AA1 in the system (7) represents the influence of 

the mass flow rate variation of vapors, m• v, on the state quantity v 

(variation of the refrigerant vapor temperature), considered in the Laplace 

domain. Similarly, the other coefficients represent the influences introduced by 
the corresponding disturbing quantities on the state quantities. 

4. CONCLUSIONS 

The paper presents the dynamic model using multidimensional Laplace 
transforms that are applied on time and length coordinate. This approach is 

very useful to analyze the dynamics, stability of the model of REHEX using 
linear equations in Laplace domain. More important is the fact that the system 

no longer needs to be re-integrated if the input variables are changing. 
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