
COMEC 

The 10th International 
Conference on       

COMPUTATIONAL 

MECHANICS AND 
VIRTUAL 

ENGINEERING 

  
 

25-27 October 2023   

 

THE WEAKENING OF THE CLAMPED END 
OF A BEAM AND THE INFLUENCE ON THE 

DYNAMIC BEHAVIOR (PART I) 

I. Harea1, Z.I. Praisach2, D.A. Pîrșan*3, P.T. Stan4  

1. Babeş-Bolyai University, Faculty of Engineering, Reşiţa, România, ionela.harea@ubbcluj.ro 

2. Babeş-Bolyai University, Faculty of Engineering, Reşiţa, România, zeno.praisach@ubbcluj.ro 

3. Babeş-Bolyai University, Faculty of Engineering, Reşiţa, România, dan.pirsan@ubbcluj.ro 

4. Babeş-Bolyai University, Faculty of Engineering, Reşiţa, România, patric.stan@ubbcluj.ro 
*Corresponding author: dan.pirsan@ubbcluj.ro 

Abstract: Using analytical equations, the paper aims to solve the dynamic behavior of beams 

where a clamped end of the beam does not respect the ideal boundary conditions by introducing 

a weakening coefficient. In the paper, the characteristic equation for determining the 

eigenvalues and the relationship of the modal function are derived. The results show the first 

four vibration modes for different values of the weakening coefficient which is considered in the 

clamped end. 
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1. INTRODUCTION 

Different types of failures it can be occurred in structures. They can be caused 

by a lots of factors. It can be mentioned: improper manufacturing conditions, 
loosening of joints due to shocks and excessive vibrations, degradation caused 

by environmental conditions, material fatigue and exceeding the expected 

operating demands [1]. 

The loss of integrity of structures can be attributed not only to the presence of 

cracks but also to joint failure, especially for beam-type structures. Methods 
used of modal parameters prove reliable for the detection and evaluation of 

damage in beams by applying several techniques like flexibility coefficients, 

derived stiffness matrix, the frequency response function FRF [2-5] 

From a static or dynamic point of view, the analysis of beams with fixed ends 

involves the consideration of displacements and slopes perfect boundary 
conditions. Most researchers use measurement of natural frequencies to 
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characterize imperfect boundary conditions, while others consider modal shapes 

to detect deviation from ideal conditions [6-7]. 

In this paper, the authors propose an analytical method regarding the dynamic 

behavior of a beam for which the clamped end is defined by a weakening 
coefficient k, so that for the zero value of k the support is considered the hinge, 

and for the 1 value of k, the support becomes clamped. 

2. ANALYTICAL APPROACH 

In order to analyze the dynamic behavior of a beam with L=1 (normalized beam) 

under the action of its dead weight (q) and having the constant cross section, it 
is considered the case of a clamped-hinge supported beam (Fig. 1). On the 
clamped end it was introduced a weakening coefficient k1 ϵ [0, …, 1] which allows 

us to have both bending moment and slope in this support [8]. 

 
Figure 1: A schematic diagram of a weakened clamped end 

It will be considered that for k1=1, that the support is clamped (Fig. 1 – left) 

and for k1=0, the support becomes a hinge (Fig. 1 – right). Any other value of 

k1 ϵ [0, ..., 1] is considered to be a weakened clamped. 

It is known from the strength of materials that for a hinge support located at 

x=0, the boundary conditions for a beam loaded with its dead weight are: the 
deflection (WH(0)=0) and the bending moment (WH(0)=0) are equals to zero, 

The slope has the expression: 

 
𝑊𝐻

′ (0) =
q ∙ 𝐿3

24𝐸 ∙ 𝐼
, 

(1) 

where, 

q [N/m] is the load per unit of length (dead load); 

L [m] is the beam length; 

E [N/m2] is the elastic modulus on, or Young’s modulus; 

I [m4] is the moment of the inertia of the cross section. 

and for the boundary conditions of a clamped end at x=0, the deflection 

(WC(0)=0) and the slope (W'C(0)=0) are equals to zero. The bending moment 

can be written as: 

 
𝑊𝐶

"(0) = −
q ∙ 𝐿2

8𝐸 ∙ 𝐼
, 

(2) 



84 
 

Thus, if we apply the bending moment from relation (2) to the hinged at x=0, it 
becomes a clamped end, and the slope from relation (1) must be in the opposite 

direction and depending on the bending moment from (2) can be written: 

 
𝑊𝐻

′ (0) = −
q ∙ 𝐿3

24𝐸 ∙ 𝐼
= −

𝐿

3
(
q ∙ 𝐿2

8𝐸 ∙ 𝐼
) = −

𝐿

3
(−𝑊𝐶

"(0)) =
𝐿

3
𝑊𝐶

"(0) 
(3) 

or, expressing the bending moment from (3) and taking into account the 

weakened stiffness k1, we have: 

 
𝑘1𝑊𝐶

"(0) = 𝑘1
3

𝐿
𝑊𝐻

′ (0) 
(4) 

To satisfy the boundary conditions for x=0 and k1 ϵ [0, ..., 1], so that the left 

support to be a weakened clamped end, we will obtain the relation: 

 
(1 − 𝑘1)𝑊𝐻

"(0) − 𝑘1𝑊𝐶
"(0) = (1 − 𝑘1)𝑊𝐻

"(0) − 𝑘1
3

𝐿
𝑊𝐻

′ (0) = 0 
(5) 

From relation (5) it can be seen that for any other values of k1 ϵ [0, ..., 1], in 

the left support we will find both bending moment and slope. 

3. MODAL ANALYSIS 

For the Euler-Bernoulli model, we started from the spatial solution of the 

differential equation of bending vibrations, free and undamped: 

 𝑊(𝑥) = Asin(αx) + Bcos(αx) + Csinh(αx) + Dcosh(αx) (6) 

where, 

W(x) is the modal motion function; 

A, B, C, D are integration constants that are obtained from the boundary 

conditions; 

 is the eigenvalue; 

x is the variable length of the normalized beam. 

For clamped end and hinged end, at x=0, the deflection is zero. Substituting 

x=0 in relation (6), we get: 

 𝑊(0) = 0 = B + D ⇒ 𝐷 = −𝐵 (7) 

Entering the result from (7) in the relation (6), the slope and the bending 

moment become: 

 
{
𝑊′(0) = α(A + C)

𝑊"(0) = −2α2B
 

(8) 

At the right end, for x=L=1, on the hinge support, considering (7) in (6), the 

deflection and the bending moment are equals to zero: 

 
{
𝑊(1) = 0 = Asinα + B(cosα − coshα) + Csinhα

𝑊"(1) = 0 = −Asinα − B(cosα + coshα) + Csinhα
 

(9) 

The constants B and C are obtained from system (9): 
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{
𝐵 = −A

sinα

cosα

𝐶 = −A
sinα ∙ coshα

cosα ∙ sinhα

 

(10) 

By introducing the constants B, C and D in relation (5), the characteristic 
equation (11) is obtained whose solutions give us the eigenvalues for each 

vibration mode and the modal function is presented in relationship (12): 

 
2α(1 − k1)sinα ∙ sinhα + 𝑘1

3

𝐿
(sinα ∙ coshα − cosα ∙ sinhα) = 0 

(11) 

 
𝑊(𝑥) = A [sin(αx) −

sinα

cosα
(cos(αx) − cosh(αx)) −

sinα ∙ coshα

cosα ∙ sinhα
sinh(αx)] 

(12) 

 

4. RESULTS 

The eigenvalues for the first four vibration modes (n=4) and different values of 

k1, solutions of relationship (11), can be found in table 1. 

The first 4 (four) normalized vibration modes for the following values of k1=0.0, 

0.25, 0.50, 0.75, 0.85, 0.95 and 1.00 are illustrated in the Fig. 2 – 5. 

Table1. Eigenvalues for the first four vibration modes 

k1 Vibration mode (n) 

 1 2 3 4 

1.0 3.9266023 7.0685830 10.2101800 13.3517700 

0.95 3.8632168 6.9601886 10.0612560 13.1662817 

0.85 3.7479163 6.7905457 9.85839280 12.9437574 

0.75 3.6459736 6.6662741 9.73103940 12.8205578 

0.50 3.4364156 6.4692320 9.55958400 12.6718200 

0.25 3.2447893 6.3389809 9.46287750 12.5952748 

0  2  3  4  

 
Figure 2: Normalized mode shapes for the first vibration mode 
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Figure 3: Normalized mode shapes for the second vibration mode 

 
Figure 4: Normalized mode shapes for the third vibration mode 

 
Figure 5: Normalized mode shapes for the fourth vibration mode 
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1. CONCLUSIONS 

The paper presents the eigenvalues and modal shapes for the first four vibration 
modes for the case where the clamped end of the beam is weakened by the 

coefficient k1. 

For the extreme cases: k1=0, the eigenvalues (Table 1) were obtained from the 

simply supported beam (hinged at both ends); respectively for k1=1, we find the 

eigenvalues for the beam clamped at one end and hinged at the other. 

From the analysis of the figures 2 – 5, for the first 4 modes of vibration, it can 

be observed that for stiffness values k1<0.5, from the point of view of dynamic 
behavior, the weakened clamped end has a behavior very close to that of a 

hinged support. 

For stiffness values k1>0.5, the dynamic behavior of the beam is significantly 
affected and although the relation (5) that describes the weakened clamped end 

of the beam is a linear expression of k1, the effect of k1 in the modal function 

does not have a linear behavior. 

Also, from the figures 2 – 5, it can be seen the changes in the mode shapes from 

the case of the clamped-hinge beam to the simply supported beam, respectively 

to the hinged-hinged beam by modifying the weakened coefficient k1. 
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