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Abstract: In the part II of the paper, the dynamic behavior of a doubly clamped beam is 

presented, where the right clamped end of the beam is weakened by introducing a weakening 

coefficient. The analytical calculation is based on the determination of the bending moment from 

the weakened clamped end expressed as a function of slope, after which the integration 

coefficients of the modal function and the characteristic equation are determined to obtain the 

eigenvalues of the first four vibration modes depending on the weakened coefficient of the 

clamped end. The obtained mode shapes are determined for seven values of the attenuation 

coefficient. 
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1. INTRODUCTION 

The second part of the paper is intended to be a continuation of part 1 and aims 

to analytically solve a weakened clamped end for a doubly clamped beam in 
terms of its dynamic behavior. For these reasons, the bibliographic citations are 

presented in the introduction chapter of part 1. 

2. ANALYTICAL APPROACH 

As in the previous paper (part I), the beam is of constant cross-section, with the 
normalized length L=1 (Fig. 1) and loaded with the uniformly distributed load q, 

which represents the dead weight. 
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Figure 1: A schematic diagram of a weakened clamped end 

On the right clamped end, it was introduced a weakening coefficient k2 ϵ [0, …, 

1] which allows us to have both bending moment and slope in this support. 

On the same ideas, k2=1, means that the support is clamped (Fig. 1 – left) and 

k2=0, means that the support becomes a hinge (Fig. 1 – right). Any other value 

of k1 ϵ [0, ..., 1] will be considered to be a weakened clamped. 

Starting from the known relations from the strength of materials that for a hinge 

support located at x=L=1, the boundary conditions for a beam loaded with its 
dead weight are: the deflection (WH(L)=0) and the bending moment (WH(L)=0) 

are equals to zero. The slope has the expression: 

 
𝑊𝐻

′ (L) = −
q ∙ 𝐿3

48𝐸 ∙ 𝐼
, 

(1) 

where, 

q [N/m] is the load per unit of length (dead load); 

L [m] is the beam length; 

E [N/m2] is the elastic modulus on, or Young’s modulus; 

I [m4] is the moment of the inertia of the cross section. 

The boundary conditions of a clamped end at x=L, the deflection (WC(L)=0) and 

the slope (W'C(L)=0) are equals to zero. The bending moment can be written 

as: 

 
𝑊𝐶

"(L) = −
q ∙ 𝐿2

12𝐸 ∙ 𝐼
, 

(2) 

By applying the bending moment from relation (2) to the hinged at x=L, it 
becomes a clamped end, the slope from relation (1) must be in the opposite 

direction and depending on the bending moment from (2) can be written: 

 
𝑊𝐻

′ (L) =
q ∙ 𝐿3

48𝐸 ∙ 𝐼
= −

𝐿

4
(−

q ∙ 𝐿2

12𝐸 ∙ 𝐼
) = −

𝐿

4
𝑊𝐶

"(L) 
(3) 

Expressing the bending moment from (3) and taking into account the weakened 

stiffness k2, we have: 

 
𝑘2𝑊𝐶

"(L) = −𝑘2
4

𝐿
𝑊𝐻

′ (L) 
(4) 
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For x=L and k2 ϵ [0, ..., 1], so that the left support to be a weakened clamped 

end and to satisfy the boundary conditions, we will obtain the relation: 

 
(1 − 𝑘2)𝑊𝐻

"(L) − 𝑘2𝑊𝐶
"(L) = (1 − 𝑘2)𝑊𝐻

"(L) + 𝑘2
4

𝐿
𝑊𝐻

′ (L) = 0 
(5) 

For any other values of k2 ϵ [0, ..., 1], in the right support, according (5), we 

will find both bending moment and slope. 

3. MODAL ANALYSIS 

Euler-Bernoulli model it is considered, and starting from the spatial solution of 

the differential equation of bending vibrations, free and undamped: 

 𝑊(𝑥) = Asin(αx) + Bcos(αx) + Csinh(αx) + Dcosh(αx) (6) 

where, 

W(x) is the modal motion function; 

A, B, C, D are integration constants that are obtained from the boundary 

conditions; 

 is the eigenvalue; 

x is the variable length of the normalized beam. 

For clamped end, at x=0, the deflection and the slope are equals to zero. 

Substituting x=0 in relation (6), we get: 

 
{
𝑊(0) = 0 = B + D ⇒ 𝐷 = −𝐵

𝑊′(0) = 0 = A + C ⇒ 𝐶 = −𝐴
 

(7) 

At the clamped right end, for x=L=1, the deflection is equal to zero. Entering 

the result from (7) in the relation (6), become: 

 
𝑊(1) = 0 = A(sinα − sinhα) + B(cosα − coshα) ⇒ B = −A

sinα − sinhα

cosα − coshα
 

(8) 

By introducing the constants B, C and D in relation (5), the characteristic 

equation (9) is obtained. The solutions of the characteristic equation give us the 

eigenvalues for each vibration mode. 

 
α(1 − k2)(sinα ∙ coshα − cosα ∙ sinhα) + 𝑘2

4

𝐿
(1 − cosα ∙ coshα) = 0 

(9) 

 
𝑊(𝑥) = A [sin(αx) − sinh(αx) −

sinα − sinhα

cosα − coshα
(cos(αx) − cosh(αx))] 

(10) 

Also, by introducing the constants B, C and D in relation (6), the modal function 

is obtained and it is presented in relationship (10). 

4. RESULTS 

In table 1, the eigenvalues for the first four vibration modes (n=4) and different 

values of k2, solutions of relationship (9), are given. 

It can be observed that for k2=1, the eigenvalues are for the double clamped 

beam, and for k2=0, the eigenvalues are from the clamped-hinged beam. 
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The first 4 (four) normalized vibration modes for the following values of k1=0.0, 

0.25, 0.50, 0.75, 0.85, 0.95 and 1.00 are illustrated in the Fig. 2 – 5. 

Table1. Eigenvalues for the first four vibration modes 

k1 Vibration mode (n) 

 1 2 3 4 

1.0 4.7300407 7.8532046 10.9956078 14.1371655 

0.95 4.6721294 7.7608209 10.8711137 13.9830025 

0.85 4.5634558 7.6070802 10.6855517 13.7757550 

0.75 4.4638126 7.4865337 10.5578496 13.6481460 

0.50 4.2489669 7.2804336 10.3704785 13.4802534 
0.25 4.0732205 7.1534397 10.2710579 13.3991294 

0 3.9266023 7.0685830 10.2101800 13.3517700 

 
Figure 2: Normalized mode shapes for the first vibration mode 

 
Figure 3: Normalized mode shapes for the second vibration mode 
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Figure 4: Normalized mode shapes for the third vibration mode 

 
Figure 5: Normalized mode shapes for the fourth vibration mode 

1. CONCLUSIONS 

The paper presents the eigenvalues and modal shapes for the first four vibration 

modes for the case where the right clamped end of the beam is weakened by 

the coefficient k2. 

For the extreme cases: k2=0, the eigenvalues (Table 1) were obtained from the 

clamped – hinged beam; respectively for k2=1, we find the eigenvalues for the 

double clamped beam. 

From the analysis of the figures 2 – 5, for the first 4 modes of vibration, it can 

be observed that for stiffness values k2<0.5, from the point of view of dynamic 
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behavior, the weakened clamped end has a behavior very close to that of a 

hinged support. 

For stiffness values k2>0.5, the dynamic behavior of the beam is significantly 

affected and although the relation (5) that describes the weakened clamped end 
of the beam is a linear expression of k2, the effect of k2 in the modal function 

does not have a linear behavior. 

Also, from the figures 2 – 5, it can be seen the changes in the mode shapes from 
the case of the double clamped beam to the by clamped-hinge beam by 

modifying the weakened coefficient k2. 
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