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Abstract: One of the main directions for reducing the carbon emissions into 
the atmosphere consists in the use of advanced daylighting technologies 
capable of transmitting daylight into the depth of buildings. The possibility 
of using daylight throughout the day for illuminating the interiors of a 
building would help to significantly reduce the global energy consumption 
of that building and to cut down the carbon emissions. Lighting is 
responsible for 40-60% of the total energy consumption within commercial 
buildings and the use of daylight instead of electric lighting would lead to 
large energy savings. This paper assesses the performance of daylight 
transmission through light-pipes using the SUNPIPE systems installed in the 
Laboratory of Lighting Systems at the Faculty of Civil Engineering of 
Brasov. There are two light-pipes used in this study: one horizontal pipe of 
300mm diameter and 3m length, collecting daylight on the facade of the 
building, and one vertical pipe of 300mm diameter and 1m length, 
collecting daylight on the roof of the building. The light-pipes are similar 
and use 98% reflectance pure silver base mirror-finish aluminium tubes. 
Illuminance values are measured inside the pipes and on the working plane 
for different external scenarios and an evaluation module is proposed by the 
use of nonlinear regressions. 
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1. INTRODUCTION 

The light-pipe is a secondary light source which transmits light from the primary (natural or 
artificial) source to a specific target or on specific reflective or transmitting surface within interior 
spaces [1]. Light transmission is achieved at the end of the light-pipe, where light is distributed and 
directed depending on task particularities, or by side transfer towards specific targets. Light-pipes 
transmit light radiation through total internal reflection.  
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The light-pipe is perhaps the most technologically exciting among the innovative daylighting 
systems because of the long distances over which it can operate. In principle, light-pipes collect, 
direct, and channel daylight into virtually any area of a building. The system consists of three main 
components: heliostat or light dome (collecting and concentrating unit), transport system (reflective 
conducts) and emitter (distributing light into the targeted space). The use of light-pipes can increase 
energy savings, but generally system efficiency is low because of light losses within ramification or 
direction changing [8]. 

There are specific light-pipe systems for roof applications, known as solar tubes. These 
systems maximize the concept of renewable energy by reflecting and intensifying sunlight and even 
normal daylight, down through a highly reflective silver mirror-finish aluminium tube. As 
compared to heliostat collecting units, the solar tubes have the advantage of collecting sunlight and 
skylight by means of fixed, passive collecting domes. These domes collect daylight for any sun 
position in the sky, without consuming energy for lens rotations. 

Other systems are based on the micro-prismatic film as the element which performs the total 
internal reflection and have 0.98 reflectance. The internal reflection is produced within the structure 
of the 0.5 mm thick optic film, made of transparent acryl or polycarbonate [7]. 

2. SUNPIPE NATURAL LIGHTING SYSTEM 

This system developed by the British manufacturer Monodraught Ltd. is a revolutionary new 
way to pipe natural daylight from the rooftop into the building to brighten areas from dawn to dusk 
where daylight from windows cannot reach, even on overcast days [4].  

The diamond dome specially designed to maximise the capture of 
sunlight collects both direct sunlight and diffused daylight. The faceted top 
surface catches sunlight from any angle and the vertical prisms at the base of 
the diamond dome capture low level light, i.e. early in the morning and late in 
the afternoon. Global daylight is piped down into the desired room by means 
of silver-coated aluminium pipes with a mirrored surface internally. At 
ceiling level, the diffuser has the ability to distribute the light in every 
direction, giving an even spread of light throughout the interior space (see 
figure 1). 

A SUNPIPE can be almost any length that is needed, but loses 6% of 
light for every metre. There are different SUNPIPE diameters, from 230mm 
to 1000mm, typically lighting up areas of 6 to 70 sq. metres. SUNPIPE 
systems have a 98% reflectance, which means that there is 2% loss on every 
bounce, so the longer the light-pipe, the greater the loss is and in addition, 
there are losses through the roof dome or light collector and the ceiling 

diffuser. Nevertheless, the performance of a light-pipe is remarkable and typically, the 300mm 
diameter SUNPIPE can light up an area of 10 sq. metres to a normal daylight level, that is, without 
the need for electric lighting during normal daylight hours [5]. Larger light-pipes, of 450mm and 
530mm diameter, are used in larger offices and buildings with higher ceilings. 

Tests carried out by the BRE (Building Research Establishment) in the UK showed a 68% 
increase [5] of the lighting performance on the 300mm diameter for the new Super Silver SUNPIPE 
as compared to the original anodised aluminium SUNPIPE. 

3. MEASUREMENT OF DAYLIGHT TRANSFER THROUGH SUNPIPE SYSTEMS 

For the purpose of this paper, one horizontal 2.4m long 300mm diameter SUNPIPE was used 
in order to collect daylight on the façade at the top level of the window and to pipe daylight inside 

 

Fig. 1 How the 
SUNPIPE works 
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the depth of the room. Two 45 degrees elbows are used to simulate a descent of the SUNPIPE at a 
false ceiling, as it can be seen in figures 2 and 3. 

 

 
A second vertical 1.2m long 300mm diameter SUNPIPE was used to bring in daylight 

collected at roof level. This light-pipe is the daylighting component of a hybrid system used both 
for daylighting and natural ventilation, installed in the laboratory. 

The illuminance was measured inside the two light-pipes at specific points along their axis: the 
vertical axial illuminance Ev,l was taken into consideration for the horizontal light-pipe and the 
horizontal axial illuminance Eh,l was taken into consideration for the vertical light-pipe. The 
daylight transport factor DTF was introduced as the ratio between the measured values of the axial 
illuminance and the external horizontal illuminance E0 for each light-pipe. These values were 
thereafter used as criterion of comparison between the two light-pipes and to develop modelling 
equations for characterizing the daylight transport capacity of the two light-pipes. 

The following equations (1) and (2) show the expressions for  DTFh,l and DTFv,l which are the 
horizontal and vertical daylight transport factors of the horizontal light-pipe and of the vertical 
light-pipe respectively, specific to the vertical and horizontal illuminance respectively at distance l 
from the dome level: 
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Table 1. Measured values of the axial illuminance and daylight transport factors 

Horizontal 2.4m long 300mm diameter light-pipe / E0 = 4800lx 
l [cm] Ev,l [lx] DTFh,l [%] 

0 4600 95.83 
60 2900 60.42 
120 2600 54.17 
180 2550 53.13 
240 2300 47.92 

Vertical 1.2m long 300mm diameter light-pipe / E0 = 13200lx 
l [cm] Eh,l [lx] DTFv,l [%] 

0 10500 79.55 
30 8500 64.39 
60 7900 59.85 
90 6500 49.24 
120 6000 45.45 

 

Fig. 2 Daylight dome collector of the 
horizontal SUNPIPE installed on the façade

 

Fig. 3 Horizontal SUNPIPE ending with two 45 
degrees elbows above imaginary false ceiling 
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Basing on the measured values, modelling equations were created using the Levenberg-
Marquardt method to solve nonlinear regressions in order to model the daylight transport capacity 
of the two light-pipes. 

4. THE LEVENBERG-MARQUARDT METHOD 

This method combines the steepest-descent method and a Taylor series based method to obtain 
a fast, reliable technique for nonlinear optimization [2]. Neither of the above optimization methods 
are ideal all of the time; the steepest descent method works best far away from the minimum, and 
the Taylor series method works best close to the minimum. The Levenberg-Marquardt (LM) 
algorithm allows for a smooth transition between these two methods as the iteration proceeds. 

In general, the data modelling equation (with one independent variable) can be written as 
follows: 

( )axyy r;=                 (3) 
The above expression simply states that the dependent variable y can be expressed as a 

function of the independent variable x and vector of parameters a of arbitrary length. Note that 
using the LM method, any nonlinear equation with an arbitrary number of parameters can be used 
as the data modelling equation.  Then, the “merit function” we are trying to minimize is  
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where N is the number of data points, xi denotes the x data points, yi denotes the y data points, 
σi is the standard deviation (uncertainty) at point i, and y(xi,a) is an arbitrary nonlinear model 
evaluated at the ith data point.   

This merit function simply measures the agreement between the data points and the parametric 
model; a smaller value for the merit function denotes better agreement. Commonly, this merit 
function is called the chi-square.  

From the area of pure optimization, two basic ways of finding a function minimum are a 
Taylor series based method and the steepest-descent method. The Taylor series method states that 
sufficiently close to the minimum, the function can be approximated as a quadratic. A step from the 
current parameters a to the best parameters amin can be written as 

( )[ ]curcur aHaa rrr 21
min χ∇−⋅+= −

           (5) 
where H is the Hessian matrix (a matrix of second derivatives).  If the approximation of the 

function as a quadratic is a poor one, then we might instead use the steepest-descent method, where 
a step to the best parameters from the current parameters is  

( )curcur acaa rrr 2
min χ∇−=              (6) 

This equation simply states that the next guess for the parameters is a step down the gradient 
of the merit function.  The constant c is forced to be small enough that a small step is taken and the 
gradient is accurate in the region that the step is taken. Since we know the chi-square function, we 
can directly differentiate to obtain the gradient vector and the Hessian matrix.  Taking the partial 
derivatives of the merit function with respect to a gives 
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To obtain the Hessian matrix, take the gradient of the gradient above (so that we have a matrix 

of partial second derivatives): 

(7) 



Cosmin ŢICLEANU, Adrian VÎRLAN  
 

 

149

( ) ( )

( ) ( )
⎥
⎦

⎤
∂∂

∂−
−

⎢
⎣

⎡
−

∂
∂

∂
∂

−=
∂∂

∂ ∑
=

kl

i

i

ii

N

i l

i

k

i

ilk

aa
axyaxyy

a
axy

a
axy

aa
rr

rr

;;

;;12

2

2

1
2

22

σ

σ
χ

         (8) 

Now, for convenience, define the gradient vector and the curvature matrix as 
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Note that the second derivative term in C will be ignored because of two reasons:  it tends to 
be small because it is multiplied by (y-yi), and it tends to destabilize the algorithm for badly fitting 
models or data sets contaminated with outliers.  

This action in no way affects the minimum found by the algorithm; it only affects the route in 
getting there. So, the Taylor series method (inverse Hessian method) can be written as the following 
set of linear equations: 

k

NP

k
lkl GaC =∑

=1
δ               (11) 

where NP is the number of parameters in the model that is being optimized.   
This linear matrix will be the workhorse for this method after some modification; it can be 

solved for the increments δa that, when added to the current approximation for the parameters, 
gives the next approximation. Likewise, the convenient definitions can be substituted into the 
steepest descent formula to obtain 

ll cGa =δ                (12) 
Neither of the aforementioned optimization methods are ideal all of the time; the steepest 

descent method works best far away from the minimum, and the Taylor series method works best 
close to the minimum.  The Levenberg-Marquardt (LM) algorithm allows for a smooth transition 
between these two methods as the iteration proceeds. 

The first issue in deriving the LM method is to attach some sort of scale to the constant c in 
the steepest-gradient method - equation (12).   

Typically, there is no obvious way to determine this number, even within an order of 
magnitude.  However, in this case, we have access to the Hessian matrix; examining its members, 
we see that the scale on this constant must be 1/Cll.  But, that still may be too large, so let's divide 
that scale by a non-dimensional factor (λ) and plan on setting this much larger than one so that the 
step will be reduced (for safety and stability). 

The second issue to formulate the LM method is noting that the steepest-descent and Taylor 
series methods may be combined if we define a new matrix Mij by the following: 
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This matrix combines equations (11) and (12) into a convenient and compact form.  So finally, 
we have a means of calculating the step δa in the parameters by the following system of linear 
equations: 

k

NP

k
lkl GaM =∑

=1
δ              (14) 

When λ is large, the matrix M is forced to be diagonally dominant; consequently, the above 
equation is equivalent to the steepest descent method - equation (12).  Conversely, when the 
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parameter λ goes to zero, the above equation is equivalent to the Taylor series method - equation 
(11).   

Therefore, we vary λ to switch between the two methods, continually calculating a parameter 
correction δa that we apply to the most recent guess for the parameter vector.  

The steps that are taken in the LM algorithm are as follows: 
1. Compute χ2(a) 
2. Pick a conservative value for λ 
3. Solve the linear equations for δa 
4. Evaluate χ2(a+δa) 
5. If χ2(a+δa)>=χ2 (a), increase λ by a factor and go back to step 3 
6. If χ2(a+δa)<χ2 (a), decrease λ by a factor, correct the parameter vector by a=a+δa, and go 

back to step 3 

Iteration is stopped when ( ) ( ) tolerance22 <−+ aaa χδχ  

5. THE MODELLING EQUATIONS 

The goal was to find a recurrence law for the light transmission. Therefore, the horizontal 
illuminance within the axis of the vertical light-pipe and the vertical illuminance within the axis of 
the horizontal light-pipe were measured at certain distances from the diamond domes. 

Based on the values of DTF factors determined previously, recurrence laws were determined 
to predict the axial illuminance at the end of a light-pipe of specific length for a certain value of the 
external horizontal illuminance at roof level. 

If E0 is the external horizontal illuminance at roof level, then the horizontal illuminance Eh,l 
within the axis of the vertical light-pipe at distance l [cm] from the diamond dome will be 

( )lDTFEE vlh ⋅= 0,               (15) 
where DTFv(l) is the recurrence function expressing the daylight transport capacity of a light-

pipe of length l measured in cm. This function was determined using the CurveExpert v1.4 software 
based on the Levenberg-Marquardt method of nonlinear regression. 

The same applies for the vertical illuminance Ev,l within the axis of the horizontal light-pipe, 
which at distance l [cm] from the diamond dome will be 

( )lDTFEE hlv ⋅= 0,               (16) 
where the recurrence function DTFh(l) was determined using the same method as above. 
For the measured values, the CurveExpert v1.4 software generated the recurrence functions 

using the Levenberg-Marquardt method of nonlinear regression for 23 regression models.  
The most accurate form determined for the recurrence function of the daylight transport 

capacity of the horizontal light-pipe was: 

( ) ch lba
lDTF

⋅+
=

1
              (17) 

if using the Harris regression model with 1.4965 standard error and 0.9985 correlation 
coefficient, where: 

a = 1.0436 x 10-2   b = 1.4251 x 10-3   c = 3.5527 x 10-1 

For the daylight transport capacity of the vertical light-pipe, the following recurrence function 
was proposed: 

( )
bla

lDTFv +⋅
=

1
              (18) 

if using the reciprocal model model with 2.0356 standard error and 0.9914 correlation 
coefficient, where: 
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a = 7.9140 x 10-5   b = 1.2668 x 10-2 

Figures 4 and 5 below show the curves for the recurrence functions determined above. 
 

Fig. 4 Modelling equation for the daylight transport capacity of the horizontal light-pipe 

Fig. 5 Modelling equation for the daylight transport capacity of the vertical light-pipe 

On the other hand, the daylight transport capacities of the two light-pipes can be compared by 
means of the daylight transport factors measured and modelled as above. Considering the equations 
determined above, DTF values can be calculated at any distance from the diamond dome collecting 
unit of the light-pipes.  

Table 2. Daylight transport factors for the horizontal and vertical light-pipes 

DTFh [%] DTFv [%] Difference [%] l 
[cm] Measured Calculated Error Measured Calculated Error Measured Calculated

0 95.83 95.82 0.01 79.55 78.94 0.61 16.28 16.88 
30 n/a 65.76 n/a 64.39 66.48 2.09 n/a -0.72 
60 60.42 60.46 0.04 59.45 57.42 2.03 0.97 3.04 
90 n/a 57.19 n/a 49.24 50.53 1.29 n/a 6.66 
120 54.17 54.81 0.64 45.45 45.12 0.33 8.72 9.69 
150 n/a 52.94 n/a n/a 40.75 n/a n/a 12.19 
180 53.13 51.41 1.72 n/a 37.16 n/a n/a 14.25 
210 n/a 50.10 n/a n/a 34.14 n/a n/a 15.96 
240 47.92 48.96 1.04 n/a 31.58 n/a n/a 17.38 

Figure 7 below shows the difference between the daylight transport factors of the two light-
pipes, which proves that a vertical light-pipe has indeed a higher transport capacity as compared to 
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a horizontal light-pipe of similar length and diameter. The average calculated difference between 
the daylight transport factors is 10.59% in favour of the vertical light-pipe. 

 

Fig. 7 Comparison of the daylight transport capacities of the vertical and horizontal light-pipes 

6. CONCLUSIONS 

The experimental research undertaken by the authors shows an important potential of light 
transmission towards interior spaces by means of light-pipes. It is essential to emphasize that the 
300mm diameter used for the SUNPIPE systems used for this research is only the second one from 
the range of SUNPIPE diameters. The 450mm diameter would double the light transmission 
potential, while the 530mm diameter would triple it. Therefore, the quantity of light which may be 
transported by such light-pipes would grow significantly.  

Although the vertical light-pipe proved to be more efficient in terms of daylight transport as 
compared to the horizontal light-pipes, it can be concluded that the difference of 10.59% is not so 
high. This may entitle us to suggest that horizontal light-pipes can be a relatively efficient solution  
for side daylighting, in order to collect daylight on the façade of buildings and to transport it 
towards blind interior spaces. It seems however that the daylight transport capacity of an horizontal 
light-pipe decreases faster with its length as compared to a vertical light-pipe. This fact would make 
it acceptable for relatively short distances of less than 3m from the façade to the blind interior 
space. Future work will be carried out by the authors to improve the modelling equations so that 
accurate estimates can be made for any length and diameter of the SUNPIPE light-pipes. 
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