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Abstract: This paper presents the approximation of a boundary value problem of diffusion in a perforated domain with very
small holes. For the beginning, we homogenize the problem using two-scale convergence and than, the limit problem is
discretized applying the finite element method and the operator-splitting method.
Keywords: perforated domain with small holes, homogenization, operator splitting, finite element method.

1. INTRODUCTION

In this paper we resume the idea from the article [3], the different is that the domain is perforated with
holes with a diameter much smaller than the period which are distributed in the domain. In the second, third and
fourth sections of the article we discuss the homogenization of the non-stationary diffusion problem with Robin
conditions. The limit problem obtained is a non-stationary convection-diffusion problem considered on the
cylindrical domain ),0( TQ  , where   is the initial fixed domain without holes.

The novelty of the present article is the approximation of the limit problem on ),0( TQ  . The
fifth section presents the spatial discretization of the locale problems which were obtained after the
homogenization process from the fourth section, using the finite element method. In the sixth section we
approximated the limit problem of the section four, combining the operator splitting – the Glowinski’s scheme of
the fractional step for the temporal discrimination (decomposition of the convection-diffusion operator) with the
finite element method for the spatial discretization. The last section presents the result of the convergence.

2. THE PERFORATED DOMAIN

We consider the open and bounded domain nR , with  the Lipschitz border  , the reference cell
     nlololoY ,,, 21    and let be an open domain YS   so that YS   with smooth border S .

Let be  r  so that 0lim
0


 




r
and 0lim 20

 n

n

r


. We consider  Sr  the translated of Sr  with the

form  Srkl   , where nZk ,  nnlklklkkl ,...,, 2211 , these translated representing the

micro holes from nR . We denote by

 


 
Kk

 SrklS , where    SrklZk n
 K , S  represented the finite reunion of

the holes from  , which can intersect  .
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We defining now the perforated domain  S\  where the holes are distributed with the period

  and the diameter r  is much smaller than  .

3. THE STATE OF THE PROBLEM

We consider the following non-stationary diffusion problem in the perforated domain  .
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under the following conditions:
i)   TLf ,02   ,   TLg ,02   , where  S  represents the border of the holes from the

domain  , S . The estimation     cgf
LL


 
  22  is true, where c  is a positive constant,

independent of  .

ii)    nn
per YLA  ,   22   jiij yAm , nR  a.e. Yy .

iii)  YLper
 ,   00  

Y

dyy ;   2
perL  so that     0



ydy  ,    20 Lu .

We denote by   







xAxA ,   
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
 r

xxgxg ,  with

  2Lg  and   is the external normal to  .

4. THE HOMOGENIZATION

Using the homogenization method of the multiple scales like in the paper [3] and proving the
convergence of the homogenization process with two-scale convergence method like in [1] – where we taking
into account by the convergences
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we obtain the homogenized problem with convection
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                                        (2)

where 0
20 uu s 

  and the other constants are
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where the correctors k  satisfies the local problem
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where   niibB  1  is the convection vector.

     


 ydyy  ,                                                                                                                         (6)

where  
Y

dyy
Y
 1
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5. THE SPATIAL DISCRETIZATION

The spatial discretization of the local problems is made with the finite element method. Because the
local problems (4) and (7) are considered on two different domains Y , respectively *Y , and these two problems
are independent of each other, we will consider two different triangulations: 2h  on Y  and respectively 4h

on *Y , with 0h . In the following figures we present these two triangulations.
About the discretizated coefficients eff

hika , , hib ,  and h  we apply a quadrature scheme.

We consider the bidimensional case and we choose  21,0Y ,
2

8
5,

8
3






S .

Figure 1: 2h

Figure 2: 4h
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We consider the finite dimensional spaces

  211
0

2 ,, hKhhhh KPvYCvvV  ,

 








 


RcxxcxxpP ij
ji

ji
ij ,,

1,0
212111 ,

  411
*0

4 ,, hKhhhh KPwYCwwW  ,

and the subspations
          1,0,,1,0,,,1,0 2111222,  yyyvyvyvyvVvV hhhhhhhper ,

 lyperiodicalis4, hhhhper wWwW  .

In this case, the spatial discretisation of the local problems (4) and (7) is
To find 2/,, hperhj V  so that:

          2/,,2/ , hperh
Y

hyjh
Y

hyhjyh VvdyyveyAdyyvyyA                  (9)

respectively,
To find 4/,hperh W  so that:
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hperhhh
Y
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                                          (10)

where 2/hA , 4/hA  represents the approximations of the matrix  yA  relative to 2/h , respectively 4/h .
The relations (9) and (10) represent linear algebraic systems.

The discretizated coefficients are obtained from the equations (3), (5) and (6):
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K
K K
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K K j

h
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ydyydy
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yab 
                                                          (11)

         


 



K
K K

hh
K K

hh
hh

ydyydyy
4/2/

 ,

where h  and h  are the approximations of the functions   (to 4/h ) and   (to 2/h ). We apply the
quadrature schemes to integrals.
Regarding the free term  txF , , the two integrals of  relation (8) are calculated using the quadrature scheme.

6. THE DISCRETIZATION

The discretization of the problem (2) using the operator splitting method and the finite element method.
We discretize the global problem (2) combining the operator splitting – the Glowinski’s scheme of the

fractional step with the finite element method. We consider   a bounded poligonal domain from 2R . Let be

h  a triangulation of  . We introduce the spaces:

  hThhh TPvCvW  ,11/
0 , where 11P  is the space of polynomials in two variables with

degree at most one;
  on00 hhhh vWvW .

We consider the partition of the interval  T,0 :

  ,10 110 TtNttnttntttt Nnn   
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N
Tt   and   tnt n   ,
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1,0 .

We have the following scheme: we denote by 0
0 uu   and let  hh uu 0

0   an approximation of 0u . We

assume that n
hu  is known and we consider the following discrete variational problems:
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Therefore, the switching from n
hu  to 1n

hu  is made passing through 3
1
n

hu  and 3
2
n

hu , practically breaking the

interval  1, nn tt  with the intermediary points 3
1
n

t  and 3
2
n

t , where   tnt n   ,






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3
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3
1,0 ,

 1,...,1,0  Nn , where we have the partition of the interval  T,0 :

T
N
TNtNttntTttttt NnNnn   ,,0 110 

and also braking the convection-diffusion operator, we denote by 21,LL  the operators:

 


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


.2

1

B
Adiv eff

L
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This is the decomposition of the next operator
   BAdiv effL .
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Figure 3:

7. CONCLUSION

In the section 6 we combined the finite element method with the operator splitting for the convection-diffusion
operator and for the breaking of the interval  1, nn tt , but before we partitioned the time interval  T,0  such
that

  ,10 110 TtNttnttntttt Nnn   
N
Tt  .

By the other hand, from the ellipticity of the coefficients and the Schwars’s inequality we find the estimation
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3
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1,0 , and

h
  is the norm on hW0 - the space which is the

approximation of  1
0H .

Also, we obtain the convergence
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