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A DUAL VECTORS BASED FORMALISM FOR PARAMETRIZATION
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Abstract:  This paper reveals a set of dual vectors based methods for rigid body displacement and motion parameterization.
When parameterization methods are designed, a very important objective is to obtain is a reduced number of algebraic
equations and fewer variables for a more compact notation. This feature is achieved by acknowledging that parameterization
of the rigid body motion is a problem strongly connected with the definition and properties of proper orthogonal dual
tensors. Tensor analysis expresses the invariance of the laws of physics with respect to the change of basis and change of
frame operations. First, we propose a method for computing orthogonal dual tensors based on the dual vectors derived from
the motion laws of both points and lines attached to the rigid body. The rigid body motion parameterization using dual
vectors gives the possibility of constructing new computational methods for the screw axis (SA) and instantaneous screw axis
(ISA) motion parameters. These methods are based on two results: the computation of SA is equivalent to the computation of
the logarithm of an orthogonal dual tensor, the computation of ISA is equivalent with the computation of an algebraic entity
entitled ”the velocity dual tensor”.
Keywords:  dual vector, rigid body, motion.

1. INTRODUCTION

A rigid body can be characterized through different types of features, among them being points and lines.
Starting with classical manipulator robot kinematics and dynamics description and finishing with the new results
obtained in robotics, machine vision, astrodynamics or neuroscience, the range of applications involving points
or lines transformation is very large [1-3]. If points are considered then any coordinates transformation can be
parametrized using homogeneous transformations. For line features, parametrization techniques were developed
using the dual numbers theory [4-7]. The combination of dual numbers, dual vectors or dual matrices calculus
with elements of screw theory generates different techniques for rigid body motion modeling [8-10]. Orthogonal
dual tensors are a complete tool for computing rigid body displacement and motion parameters. A reduced
number of algebraic equations and a more compact notation with fewer variables are two of the advantages of
orthogonal dual tensor based parametrization methods. The first goal of our research is to give a more compact
algebraic description regarding rigid body motion parametrization using tensors and to discuss the advantages
over the methods involving dual matrices [8-14]. Our tensorial parametrization method is generated by the
properties of the dyadic product between dual vectors. The second contribution represents a set of new
computational methods for the screw axis (SA) and instantaneous screw axis (ISA) motion parameters.
The mathematical preliminaries and the notations are presented in section 2. Different algebraic sets were used to
construct the parametrization methods proposed in this paper, their most important properties being detailed in
the appendixes. The construction of the dual tensors module using the dyadic product between a basis of dual
vectors and its reciprocal is discussed in section 3. Section 4 focuses on a new rigid body motion
parameterization using bases of dual vectors. The construction of orthogonal dual tensors and screw and
instantaneous screw parameters computation techniques are detailed. Also, a short and constructive proof of the
famous Mozzi - Chasles theorem using dual tensors is presented. Section 5 contains the conclusions and future
work.
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2 MATHEMATICAL PRELIMINARES AND NOTATIONS

This section outlines briefly the notations used in the rest of the paper and the algebraic properties of dual
numbers, dual vectors and dual tensors. Regarding notation, in order to avoid name clashes, the following are
considered: x  denotes a dual number, x  a dual vector,   represents the imaginary entity which fulfills 2 = 0 .
Details over the dual numbers, dual vectors and dual tensors sets can be found in [7], [14], [15].

    • Dual numbers
Let the set of real dual numbers be denoted by:

2
0 0= = { = | , , = 0}.a a a a a    R R R R (1)

 where = ( )a Re a  is the real part of a  and 0 = ( )a Du a  the dual part.
Any differentiable function of a dual number variable 0=x x x can be decomposed as:

0( ) = ( ) '( ).f x f x x f x (2)

 The inverse of aR , denoted by 1a R , exists if and only if ( ) 0Re a   and is computed using

1 0
2

1 1= =
a

a
a a a

  . Also, aR  is a zero divisor if and only if ( ) = 0Re a .

    • Dual vectors
In the Euclidean space, the linear space of free vectors with dimension 3 will be denoted by 3V . The ensemble of
dual vectors is defined as

2
3 3 3 0 0 3= = { = ; , = 0},a a a a,aV V V V     (3)

where = ( )a aRe  is the real part of a  and 0 = ( )a aDu  the dual part. For dual vectors, three products will be
considered: scalar product (denoted by a b  ), cross product (denoted by a b ) and triple scalar product
(denoted by < , , >a b c  ).
The magnitude of a , denoted by | |a , is the dual number which fulfills | | | |=a a a a   and can be computed
using

0

0

,  ( ) 0
|| ||| |= ,

|| ||,            ( ) = 0

a a
a a

aa
a a

Re

Re





  



P P
(4)

where || . ||  is the Euclidean norm. If | |= 1a  then a  is called unit dual vector.
Thus, based on these properties results that ( , , ) R  is a commutative and unitary ring and any element aR is
either invertible or zero divisor, while 3( , , )V  R  is a free R -module.

    • Dual tensors
An R -linear application of 3V  into 3V  is called an Euclidean dual tensor:

1 1 2 2 1 1 2 2

1 2 1 2 3

( ) = ( ) ( ),
, , , .

v v v v
v v V

T T T   
 
 
   R

(5)

From now on, the Euclidean dual tensor T will be shortly called dual tensor and 3 3( , )L V V  will denote the free
R -module of dual tensors. To the authors knowledge, the properties of 3 3( , )L V V  can be found only in a few
articles like.

3. DUAL TENSOR CONSTRUCTION USING DUAL VECTORS

The rigid body displacement and motion parameterization methods proposed in section 4 are based on the
properties of dual tensors. Thus, the present section the design of the dual tensor set is discussed. The key of the
chosen design is the combination between dual bases and the dyadic product of dual vectors [16, 17]. In order to
set-up the base of the dual tensor construction technique, we first uncover some algebraic results for dual bases.

Theorem 1  If 3a V  then a dual number R  and a unit dual vector 3u V  exist in order to have =a u .

Also, if ( )a 0Re   then   and u  are unique up to a sign change.
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Proof. If || . ||  is the Euclidean norm then 0=|| ||
|| ||
a a

a
a

 


  and 0
3

( )
=

|| || || ||
a a aau

a a

 

  proves the theorem when

( )a 0Re  . If ( ) =a 0Re  then 0= || ||a   and 0 0

0 0

=
|| || || ||

a a
u v

a a
  , 3v V  .

The geometrical interpretation of Theorem 1 is that any dual vector a  from 3V , with ( )a 0Re  , can be
associated with a labeled line in the Euclidean three dimensional space. The elements of the dual vector

0=u u u  give the direction of the line parametrized as Plucker coordinates [2,3], while the dual number

0=| |=|| ||
|| ||
a a

a a
a

 


  represents the label. If ( ) =a 0Re  then the geometrical interpretation is a set of parallel

lines described by 0a  and labeled with 0=| |= || ||a a  . □

Definition 1 A set of three dual vectors 1 2 3= { , , }B e e e  will be called dual basis if the dual vectors are R  linear
independent and also represent a span set for 3V .

Proposition 1 If any three dual vectors 3 , = 1,3ek V k , fulfill 1 2 3(< , , >) 0e e eRe   then there are uniquely

determined  1 2 3, ,e e e  using the conditions = , , = 1,3e e j j
i i i j , where j

i  is the Kronecker symbol.

Proof. Let 1 2 3{ , , }e e e  be a set constructed by the following rules:

1 2 32 3 3 1 1 2

1 2 3 1 2 3 1 2 3

= ,  = , = .
< , , > < , , > < , , >

e e e e e ee e e
e e e e e e e e e
  

(6)

Using (6) the conditions = , , = 1,3e e j j
i i i j  are fulfilled. □

Remark 1  For a dual basis 1 2 3= { , , }B e e e , the set 1 2 3* = { , , }B e e e  represents its reciprocal dual basis. The
dual basis B  coincides with *B  if and only if B  is an orthonormal basis (aka =e ei j ij ).

Given two dual vectors a  and 3b V , a b  denotes a dual tensor called tensor (dyadic) product and is defined
by:

3 3 3 3: ,  ( ) = ( ) , .a b a b v v b a vV V V V       (7)

An important property of (7) is that ( )( ) = ( )a b c d b c a d    . From this point on we uncover how the dyadic
product can be used to construct a dual tensor.

Theorem 2  The following statements are true:
    1.  A dual tensor 3 3:T V V  is uniquely determined by the values obtained after T  is applied to the elements
of the dual basis 1 2 3= { , , }B e e e :

= ( ) .e ei
iT T  (8)

   2.  The ensemble 3 3( , )L V V  is a free R - module of rank equal to 9 .
Proof. Starting with (8) the Einstein’s rule for mute indexes summation, when i  varies from 1 to 3, will be used.
Let 3v V  be an arbitrary vector that has the following expression in the basis 1 2 3= { , , }B e e e :

= ( ) .v v e ej
j (9)

Using (5) it results that
= [(( ) )] = ( )( ) =

[( ) ]

v v e e v e e

e e v

j j
j j

j
j

T T T

T

 

 
(10)

which proves the first part of the theorem □.

If T  is a dual tensor then the dual vectors , = 1,3e jT j  can be written as

= [ ( )] , = 1,3.e e e ei
j j iT T i (11)

Denoting with = ( ),e eii i
j j jT T T R  and combining (14) with (11) generates

= ,e e ji
j iT T  (12)
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which represents a linear combination of tensors  
, =1,3

e e j
i i j
  that is equivalent with a spanning set. The

previous result, together with the remark (which can be easily proven) that  
, =1,3

e e j
i i j
  are R  linearly

independent in L , imply that  
, =1,3

e e j
i i j
  is a basis in 3 3( , )L V V  and 3 3( , )Lrank V VR = 9 .

For any dual vector 3a V  the associated skew-symmetric dual tensor will be denoted by a  and defined by:

3= , .ab a b b V   (13)
The set of skew-symmetric dual tensors is structured as a free R -module of dimension 3, module which is
isomorph with 3V . The following notation are considered = vecta a , = spina a  [2].
For an arbitrary dual tensor T  the following entities can be computed

T T1 1sym = [ ],  skew = [ ],
2 2

T T T T T T  (14)

where "sym"  is the symmetric part of the dual tensor and "skew"  is its skew-symmetric part. Also, the axial
dual vector and the trace of tensor T  are given by:

T 1 2 3 1 2 3 1 2 3

1 2 3

< , , > < , , > < , , >1vect = vect [ ], trace .
2 < , , >

e e e e e e e e e
e e e

T T T
T T T T

 
  (15)

Both vectT  and traceT  have the R -linearity property: 1 2 1 2 3 3, , , ( , )LT T V V    R

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

vect( ) = vect vect
.

trace( ) = trace trace
T T T T
T T T T
   
   
 
 

(16)

If the dual tensor defined by (7) is analyzed, the following results emerge: T( ) =a b b a  ,
1vect( ) = ( )
2

a b b a   and trace( ) =a b a b  . These results combined with (16), when T  is given by (11),

lead to:
T = ( ),e ei

iT T (17)
1vect = ( ) ,
2

e ei
iT T  (18)

trace = ( ) .e ei
iT T  (19)

In (31), (32), (33) the Einstein’s rule for mute indexes summation has been used, where i  varies from 1 to 3.

4. RIGID BODY MOTION AND DISPLACEMENT PARAMETERIZATION

In order to have a more intuitive view of the equations that will be used in this subsection, the following
notations must be considered:

3 3 3 3{ : } = ,{ : } = .f V V f S S R RR R O O (20)
In (20), 3SO  denotes the special orthogonal group of tensors [2]. The method proposed by the authors emerges
from the remark that any rigid body motion can be modeled using elements from the set of proper orthogonal
dual tensors denoted by

3 3 3= { ( , ) | = , det = 1}L V V TS R RR I RO (21)

and time depending functions, which can be grouped in a set denoted by 3S RO :

3 3{ : } = .f S S RR O O (22)
The internal structure of any dual tensor 3R S O  is illustrated by the following result:

Theorem 4  For any 3R S RO , an unique decomposition is viable

= ,R Q Q  (23)
where 3= ( )Q Q t S RO  and 3= ( )t V   R .
Based on Theorem 4, a representation of any dual tensor from 3SO  can be given:

Theorem 5  For any orthogonal dual tensor R  defined as in (37), a dual number = d    and a dual unit
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vector 0=u u u  exists in order to have the following expression
  2

= sin (1 cos ) ,u uR I     (24)
where u  and   are recovered from the linear invariants of Q , while = ud    and

0
1 1= cot ( )
2 2 2

u u u u     .

Remark 3  For every choice of an orthogonal dual tensor 3R S O  a unit dual vector 3u V  exists so that
=u uR .

The fundamental Mozzi-Chasles [2] theorem states that: "any rigid displacement may be represented by a planar
rotation about a suitable axis passing through that point, followed by a translation along that axis". Theorem 5
and Remark 3 are in fact the steps of a very short, elegant and constructive proof of this famous theorem. A
screw axis is characterized by an unitary dual vector u  and the screw parameters (angle of rotation about the
screw and the translation along the screw axis) structured an a dual angle  . For the following results, lets recall
that the 3SO  is a Lie group and its Lie algebra can be identified by the skew-symmetric dual tensors set 3so .

Theorem 6  If the skew-symmetric dual tensors set is denoted
T

3 3 3o = { ( , ) | = }L V Vs      then the
mapping

3 3
=0

exp : o , exp( ) = =
!

k

k
s S e

k
 



 O (25)

is well defined and surjective.

The screw parameters computation are linked with the problem of finding the logarithm of an orthogonal dual
tensor R , which is defined by

 3 3 3log : , = | ( ) =ψ ψSO so logR so exp R  (26)

and is the inverse of (25). If the dual vector 0ψ = ψ ψ  is computed as = vect( )ψ ψ  then using Theorem 1

results that =ψ u  , where = 0ψ
× ψ

||

ψ ||

||

ψ ||

   and = 0
3

ψ
×(ψ × ψ)

ψu
||

ψ ||

||

ψ ||

 . This result implies that ψ  can

be used to parametrize any type of rigid motion. Before computing the logarithm of an orthogonal dual tensor,
we need to analyze the behavior and influence of the tensor’s natural invariants.

Remark 4 A direct result of Theorems 5 and 6 is that the logarithm of a dual tensor is the product u . The
parameters   and u  are called the natural invariants of R and can be recovered from the linear invariants [2]
using (24):

sin = vect ,u R (27)
1 2cos = trace .R (28)

The above equations can be transformed into
sin = vect

1cos = [trace 1]
2

u R

R



 
(29)

and the parameters , u . The unit dual vector u  gives the Plucker representation of the Mozzi-Chalses axis,
while the dual angle = d    contains the rotation angle   and the translation distance d . The
computational formulas for , u  are extracted from (29):
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3

vect ,   (vectR) 0;
| vect |

1 , ,  (vectR) = 0  trace = 1;=
|| || 2 || ||

,   (vectR) = 0  trace = 3;
|| ||

v v v v vu
v v v v

R Re
R

Q Q V Re and Q
Q Q

Re and Q

 




 


         





(30)

1= 2( | vect |, [trace 1]).
2

atan R R   (31)

The line containing the points of a rigid body undergoing minimum-magnitude velocities is called the instant
screw axis (ISA) of the body under a given motion. The instantaneous motion of the body is equivalent to that of
the bolt of a screw of ISA and is called instantaneous screw. An instantaneous screw axis, which will be defined
as a dual vector denoted by ω , is characterized by an unit dual vector u , a dual number | |ω  called magnitude
and a number p  called the pitch.
Let 0h  embed the Plucker coordinates of a line at 0=t t  then:

0( ) = ( ) .h ht R t (32)

Theorem 7  In a general rigid motion, described by an orthogonal dual tensor, the velocity dual tensor 
defined as

=h h (33)
is expressed by:

= .TR R (34)
The form of the velocity dual tensor described by (34) can be taken a step further if R  is decomposed as in (23).
This implies

= ( ).R Q Q Q    (35)

Because 3os R  results that we can consider = ω , which gives:

T T= ( ).ω Q Q Q Q    (36)

Let T=ω Q Q  and  T=v Q Q  , then
= .ω ω v (37)

This equation leads to the internal structure of the dual vector ω :
ω = ω v (38)

where ω  is the angular velocity and v  represents the linear velocity of the point of the body that coincides
instantaneously with the origin.
The dual vector   completely characterize, at a certain time, the velocity field of an rigid body in motion. Based

on Theorem 1, for || || 0   the instantaneous screw axis unit dual vector is = 3

ω ω
×(v×ω)

u
||

ω ||

||

ω ||

  and

| = v×
ω

ω | || ω ||
||

ω ||

 . If = 2

v×
ω

||

ω ||

p  denotes the pitch of the screw axis [9] then | = (1 )ω | || ω || p . For || ||= 0ω

we have an intantaneous pure translation.

5.  CONCLUSIONS

The research presented in this paper is focused on developing a new rigid body motion parametrization method
using dual vectors. Our studies showed that, in the dual tensors free module, the dual bases of dual vectors can
completely characterize the rigid body motion from the Euclidean three-dimensional space. The proposed
parametrization method was used to generate the orthogonal dual tensor that can model the motion of a rigid
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body. Screw and instantaneous screw parameters computational algorithms were also developed using dual bases
of dual vectors. For the fundamental Mozzi-Chasles theorem a very short, elegant and constructive proof was
provided. As future research goals the authors will analyze higher order kinematic properties using the free
module of dual tensors. From the applicative point of view, the dual tensors algebra can be a solution for direct
and inverse kinematics problems, multi-body problems, dual Euler-Rodrigues parameters and dual quaternions
computation from direct measurements
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