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OPTIMUM DESIGN OF SPINDLE-BEARING SYSTEMS
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Abstract: In this paper we proposed several optimization models for spindle-bearing systems. The goal is to find out the
position of the bearings, the diameters of the spindle (different diameters for several segments of the spindle) in order to
maximize dynamic stiffness (minimize receptance), i.e. the diminishing of the vibrations. Some constraints are imposed: the
distances between bearings, different diameters for several segments of the spindle, etc.
The method is very useful for the design engineers from the very beginning of the design, offering to the designer the optimal
values of the parameters.
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1. INTRODUCTION

One of the most important parts of machine tool is the spindle-bearing system. The structural properties of the
spindle affect the machining productivity and quality of the work pieces. The structural properties of the spindle
depend on the dimensions of the shaft, bearings, tool holder, and the design configuration of the spindle systems.
For HMS (high speed machining), the spindle design must be carefully decided by designers. The bearing
arrangement, the preload for the bearings, the tool holder, tool interface technologies are important issues for
high speed spindles [6], [9], [10].
For design optimization of spindles, Yang [1] conducted static stiffness  to optimize a bearing span using two
bearings, and described the methods used to solve the multi-bearing spans’ optimization method. Taylor et al. [2]
developed a program which optimizes the spindle shaft diameters to minimize the static deflection with a
constrained shaft mass.
Wang and Chang [3] simulated a spindle-bearing system with a finite element model and compared it to the
experimental results. They concluded that the optimum bearing spacing for static stiffness does not guarantee an
optimum system dynamic stiffness of the spindle. Hagiu and Gafiteanu [4] demonstrated a system in which the
bearing preload of the grinding machine is optimized.
The previous research used only two support bearings, although practical spindles may use more bearings
depending on the machining application. In addition, most of them optimize design parameters, such as shaft
diameter, bearing span, and bearing preload, to minimize the static deflection.
The machining performance can be raised by improving dynamic stiffness of spindle-bearing system [5].
The dynamic performance of the spindle system are strongly influenced by design parameter such as: distance
between bearing, diameter of the different portion of a spindle, bearing preload, bearing spacing etc.
In most papers this influence is studied by varying the parameters and analyzing of its effect on the system.
In this paper we proposed several optimization models for spindle-bearing systems.
The goal is to find out the  position of the bearings, the diameters of the spindle (different diameters for several
segments of the spindle) in order to maximize dynamic stiffness (minimize receptance), i.e. the diminishing of
the vibrations. caused by cutting forces, shaft unbalance etc.. Some constraints are imposed: the distances
between bearings, different diameters for several segments of the spindle, etc. The method is very useful for the
design engineers from the very beginning of the design, offering to the designer the optimal values of the
parameters.
To solve the problem we have combined the finite element method with optimization methods. Therefore, the
code computer optimization program in MATLAB is obtained by the coupling of the FEM with the non-linear
optimization methods with constraints [5], [10]. Spindle, holder, and tool are modeled as multi-segment beams
by using  Timoshenko beam theory. In the case of the dynamic analysis four degrees of freedom (DOF) per node
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are considered: two displacements and two slopes. The linearized bearing are commonly modeled as four spring
coefficients and four damping coefficients.
Based on the modal analysis we propose an “external” (passive) optimization model for spindle-bearing systems.

2. MATHEMATICAL MODEL

2.1. Finite element model of spindle-bearing systems

The most commonly model for analyzing a spindle systems is shown in Figure 1. In this model are the included
tool, tool-holder, spindle shaft, and bearings.
In this study, all components of the spindle–holder–tool assembly are modeled as multi-segment beams.
Timoshenko beam model and Euler–Bernoulli beam model is used. The results are compared.
The model consists of a spindle treated as a continuous elastic shaft supported on isotropic or anisotropic elastic
bearings. Consider that the dynamic equilibrium configuration of the spindle-bearing system the undeformed
shaft is along the x- direction of an inertial x, y, z coordinate system. In the study of the lateral motion of the
spindle, the displacement of any point is defined by two translations  wv ,  and two rotations  zy  , . In the
following, only axisymmetric spindles are considered. The model could use one of the following two beam finite
element types [5]:
 Beam C1 finite element type based on Euler-Bernoulli beam model;
 Beam C1 finite element type based on Timoshenko beam model;
The beam finite element has two nodes. In the case of the dynamic analysis four degrees of freedom (DOF) per
node are considered: two displacements and two slopes measured in two perpendicular planes containing the
beam. We do a comparative study of the two proposed models and on its basis we adopt the optimal model of the
goal. Timoshenko beam model is finally adopted as the beam might be short and therefore the effect of the shear
force must be considered. The gyroscopic effect and damping in bearings may be taken into account. The
liniarized bearing are commonly modeled as four spring coefficients and four damping coefficients.

Figure 1: Spindle system

The equation of an anisotropic spindle-bearing systems which consists of a flexible nonuniform shaft  and
anisotropic bearings may be written as [4], [5]

  FqKqGCqM   (1)

where q is the global displacement vector, whose upper half contains the nodal displacements in the y-x plane,
while the lower half contains those in z-y plane, and where the positive definite matrix M is mass (inertia)
matrix, the skew symmetric matrix G is gyroscopic matrix, and the nonsymmetric matrices C and K are called
the damping and the stiffness matrices, respectively. The matrices of M, C, G, K, q, and F consist of element
matrices given as
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where nN 4 , n is the number of nodes.

2.2 Receptance and dynamic stiffness

The equation of motion (1) can be rewritten in state space form as

QXBXA   (3)

where
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The NN 22   matrices A and B are real but in general indefinite, nonsymmetric. The resulting system of
equations (3) gives nonself-adjoint eigenvalue problem.
In the case of the synchronous excitation
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transforming Eq. (3) into frequency domain, we obtain
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where the matrix dR  is receptance matrix

  1 BAR jd  ,  ( 1j ) (6)

By matrix operational transform the receptance becomes

    TVbaUR 1 jd (7)

where    NN 221221 v.....vvV,u.....uuU 

 are the NN 22   matrices of right and left eigenvectors.

Next, let us introduce the dynamic stiffness matrix dK , defined as the inverse of receptance matrix

  1
dd RK (8)

From the Eq. (5) and (7) we obtain
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where *ur  and *vr  are the upper halves of the corresponding modal vectors.

3. OPTIMIZATION

3.1 Objectiv functions and design parameters

In this section, based on the modal analaysis, we propose an external (passive) optimization model for spindle-
bearing systems. The goal being the diminishing the vibrations by the maximizing of the dynamic stiffness, i.e.
by minimizing of the receptance.
To do this we need to find out the design parameters: the position of the bearings, the diameters of the shaft
(different diameters for several segment of the shaft).
Therefore, the code computer optimization program in MATLAB is obtained by the coupling of the FEM with
the nonlinear optimization methods with constraints [10]. The SQP algorithm is used to optimize the bearing
locations. The numerical differentiation and a Newton method are used to calculate the Hessian matrix, and
BFGS (Boyden-Fletcher-Goldfarb-Shanno) algorithm is used to update the Hessian matrix.
In the case of synchronous excitation the objective function is the receptance for a given rotating speed, or the
average receptance for an interval of rotating speeds. The optimization problem obtained is
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The design parameters are the distances si between the bearings and the diameters di of the different portions of
the shaft. Assume shaft type Timoshenko with gyroscopic effects included.
In the above equations Au is the amplitude of the displacement, AF is the force amplitude,  is the rotor spin
speed and   is the whirl speed. The objective function is a measure of dynamic stiffness defined by relation (8).
The authors elaborated several computer codes in MATLAB programming language.

3.2 Numerical example. Optimization of bearing locations

The design variables are bearing spans s1, s2, s3 and s4. In the numerical  simulations, the same numerical data
set, as in the paper [9], has been used, for compare sake. Fig. 3 shows the design variables for the motorized
spindle with five bearings. The main spindle specifications of SH-403 are shown in [7].
The proposed system is demonstrated against a commercially existing machine tool (Mori Seiki SH-403) as
shown in Fig. 2 for comparison. The spindle has a motorized transmission with oil–air type lubrication with four
bearings at the front and one at the rear. The maximum spindle speed is 20,000 rpm and the power and torque
properties of the spindle motor are set from the data shown in [7].

Figure 2: Mori Seiki SH-403 spindle system
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Figure 3: Design variables for the motorized spindle with five bearings

The material parameters: E = 2.07e11; Poisson = 0.3; G = E/(2*(1+Poisson)); rho = 8300;

Optimization results:
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FEM Optimal configuration

Optimal bearings pozitions: [5 0.180; 6 0.206; 7 0.232; 8 0.258; 19 0.566; 20 0.596; 21 0.386; 23 0.446];

Natural frequencies and response for optimal configuration:
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Figure 5: The Campbell diagram and response for bearing leigth preload

Figure 4: Optimal configuration spindle-holder-tool system
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Figure 6: The Campbell diagram and response for bearing heavy preload

3. CONCLUSION

The static and dynamic behavior of machine tools is influenced significantly by the design of the spindle and its
bearings. The distance between the bearings and bearing preload has considerable influence on the stiffness of
the spindle. It is often important to consider the dynamic behavior of a spindle before establishing an optimum
bearing span. In this paper we propose an external (passive) optimization model for spindle-bearings  systems.
The goal being the diminishing the vibrations by the maximizing of the dynamic stiffness, i.e. by minimizing of
the receptance.  The paper proposes a bearing spacing optimization strategy. The spindle is analyzed by a
proposed Finite Element Method (FEM) algorithm based on Timoshenko beam elements.
Therefore, the code computer optimization program in MATLAB is obtained by the coupling of the FEM with
the nonlinear optimization methods with constraints
The proposed system is demonstrated against a commercially existing machine tool (Mori Seiki SH-403). The
spindle has a motorized transmission with oil–air type lubrication with four bearings at the front and one at the
rear. The maximum spindle speed is 20,000 rpm and the power and torque properties of the spindle motor are set
from the data shown in [7].
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