

RANDOM OSCILLATIONS OF LIQUID IN THE U-SHAPED PIPE WITH PRONOUNCED RUGOSITY AND THE NON-LINEAR DAMPING FORCE

Marinică STAN¹, Petre STAN²

¹University of Pitesti, Romania, email: stan_mrn@yahoo.com ² University of Pitesti, Romania, email: petre_stan_marian@yahoo.com

Abstract: The present paper consists of discussion on dynamic response of oscillators under random load. This paper is concerned with forced oscillations of fluid. A major problem of fluid dynamics is that the equations of motion are non-linear. Therefore, it is necessary to replace the nonlinear system with an equivalent linear system. Method of equivalent linearization has been extensively used in these engineering applications. A substantial reference list of workin this area can be found in Roberts and Spanos. In general, and especially in random vibration analysis, it is difficult to obtain a closed form solution for dynamic response of a nonlinear system.

Keyword: Random oscillations, nonlinear damping, natural frequency, the power spectral density.

1. INTRODUCTION

 Nonlinear dynamic systems subject to random excitations are frequently met in engineering practice. The basic idea of the statistical linearization approach is to replace the original nonlinear system by a linear one. They are random processes and commonly described by spectral density functions. A major problem of fluid dynamics is that the equations of motion are non-linear. This implies that an exact general solution of these equations is not available.

2. SYSTEM MODEL

We consider a U-shaped pipe with rough inner surface with constant section diameter d, in which there is a liquid with known density ρ_0 . If there is a random disturbance occurs at a certain time t elevation h (t). Decrease in the first branch [4,5] and the second liquid fluid up. We believe that rubbing the tube is nonlinear. The ordinary differential [1,2] equation of the motion can be written as:

$$
m h(t) + c h(t) + k h(t) = W(t)
$$
\n⁽¹⁾

where *m* is the mass, *c* is the viscous damping coefficient, $W(t)$ is the external excitation signal with zero mean and $h(t)$ is the displacement response of the system. $S_h(\omega)$ and $S_W(\omega)$ are the power spectral density for $h(t)$ and the external excitation $W(t)$ respectively.

Dividing the equation by m , the equation of motion can be rewritten as:

$$
\ddot{h}(t) + 2\xi \dot{p} \dot{h}(t) + \frac{2g}{l} h(t) = w(t)
$$
 (2)

where ξ is the critical damping factor and p is the undamped natural frequency, for the linear system. By linearization [2,3] of the equations of motion we find the following linear equation:

$$
\frac{1}{2}(t) + \frac{1}{2}(t) + \frac{2g}{2}(t) = x(t)
$$

$$
h(t) + \phi_{ech} h(t) + \frac{2g}{l} h(t) = w(t).
$$
 (3)

This linearization system introduces an error that has to be as low as possible so minimal. The difference is the difference between the nonlinear stiffness and linear stiffness terms [2,3,6], which is

$$
\varepsilon = 2\xi p h(t) - \phi_{ech} \eta(t) \tag{4}
$$

The value of ϕ_{ech} can be obtained by minimizing [2,6,7] the expectation of the square error

$$
\frac{\partial}{\partial \phi_{ech}} E[\varepsilon^2] = 0 \tag{5}
$$

Because

$$
E\{\varepsilon^2\} = 4\xi^2 p^2 E\{h\} + \phi_{ech}^2 E\{h\} - 4\xi p \phi_{ech} E\{h\},
$$
\n(6)

we obtain next equation

4.

4.

$$
\phi_{ech} E\{h\}^{-2} - 2\xi p E\{h\} = 0. \tag{7}
$$

Because

$$
\phi_{ech} = 2\xi p \frac{E\{h\}}{2},
$$
\n
$$
E\{h\}
$$
\n(8)

obtain

$$
\ddot{h}(t) + c \frac{E\{\dot{h}\}}{2} \dot{h}(t) + \frac{2g}{l} h(t) = w(t).
$$
\n(9)

The displacement variance [1,2,7] of the system under Gaussian white noise excitation can be expressed as

$$
\sigma_{h}^{2} = R_{h}(0) = \int_{-\infty}^{\infty} \left| H(\omega) \right| mS_{0} d\omega \tag{10}
$$

Because we have the following equation for the transfer function [1,7,8]

$$
H(\omega) = \frac{1/m}{p^2 - \omega^2 + 2i\omega\zeta p \frac{E\{\hat{h}\}^2}{\zeta\|\zeta\|}}
$$
\n
$$
(11)
$$
\n
$$
E\{\hat{h}\}
$$

the displacement variance can be expressed [1,8,9]

$$
\sigma_{h}^{2} = \int_{-\infty}^{\infty} \frac{4S_{0}}{\rho I \pi d^{2}} \frac{1}{\left(p^{2} - \omega^{2}\right)^{2} + 4\omega^{2} \xi^{2} p^{2} \left[1 + \left(\frac{E\left(h^{4}\right)}{E\left\{m^{2}\right\}}\right)\right]^{2}} d\omega = \frac{\pi S_{0}}{\rho I \xi p^{3} \frac{\pi d^{2}}{2} \left(1 + \frac{E\left\{h^{4}\right\}}{E\left\{h^{4}\right\}}\right)},
$$
\n(12)

where

$$
c_e = 2\xi pm \left(1 + \frac{E\{h\}}{2} \right) \tag{13}
$$

The set of conditions that guarantee the existence of the Fourier transform is the Dirichlet conditions, which may be expressed as: the signal $h(t)$ has a finite number of finite discontinuities and the signal $h(t)$ contains a finite number of maxima and minima.

Using the transfer function $[1,8,9]$ we obtain the answer as a function of frequency

$$
\bar{h}(\omega) = H(\omega)\bar{W}(\omega),\tag{14}
$$

where

$$
\bar{h}(\omega) = F(h(t)),\tag{15}
$$

$$
\bar{W}(\omega) = F(W(t)).
$$
\n(16)

In this way, the power spectral density of the response for the system is

$$
S_{h}(\omega) = \frac{S_{W}(\omega)}{m^{2}\left[p^{2} - \omega^{2} + 2i\omega\xi p \frac{E\{h\}}{2}\right]}
$$
\n⁽¹⁷⁾\n⁽¹⁷⁾\n⁽¹⁸⁾

3. THE NUMERICAL RESULTS

The Duffing oscillator has been used to illustrate this procedure here. Figure 1 was obtained for spectral density of excitation $S_F = 0.5N^2 \cdot s$, with parameters $l = 23cm$, $\rho = 910 \frac{kg}{m^3}$, $d = 1.5cm$ m $= 23cm, \rho = 910 \frac{\kappa_5}{3}, d = 1,5cm$.

The broadening of the first resonant peak is described very satisfactorily by the approximate solution. Obtain in this case for the displacement variance

$$
\sigma_h^2 = \frac{\pi S_0}{2\xi pk} \left[\frac{4}{1 + \frac{E\{h\}}{2}} \right]
$$
\n
$$
(18)
$$

The power spectral density of the response $S_h(\omega)[m^2 \cdot s]$, for Gaussian white noise with spectral density function $S_0 = 0, 5 \frac{N \cdot m}{s}$ $= 0, 5 \frac{N \cdot m}{N}$, is plotted for the differents parameters in fig 1.

By adding the formula

$$
E\{h^4\} = \frac{45}{4}\sigma^2_{h}E\{h^2\},
$$
\n(19)

we obtain the equation of the system with solution $\sigma_{\frac{1}{h}}^2 = 0.006827 m^2$.

Figure 1. The power spectral density of the response $S_h(\omega)$ $[m^2 \cdot s]$ for $l = 23cm$, $\rho = 910 \frac{kg}{m^3}$, $d = 1, 5cm$. m $= 23cm, \rho = 910 \frac{\mu_{5}}{2}, d =$

The power spectral density of the response $S_h(\omega)[m^2 \cdot s]$, for Gaussian white noise with spectral density function $S_0 = 0, 5 \frac{N \cdot m}{s}$ $= 0.5 \frac{N \cdot m}{s}$, is plotted for $l = 23cm$, $\rho = 850 \frac{kg}{m^3}$, $d = 1,5cm$ m = $23cm$, $\rho = 850 \frac{R}{3}$, $d = 1, 5cm$ in fig 2. we obtain the equation of the system with solution $\sigma_{h}^{2} = 0,009827m^{2}$.

Figure 2. The power spectral density of the response $S_h(\omega)$ $[m^2 \cdot s]$ for $l = 23cm$, $\rho = 850 \frac{kg}{m^3}$, $d = 1,5cm$ m $= 23cm, \rho = 850 \frac{\kappa_5}{2}, d = 1, 5cm.$

4. CONCLUSIONS

Figure 1-2 show a good agreement between theory and experiment. Detailed numerical results are presented for of nonlinear oscillators under white noise excitation. The power spectral density of the response will not have a large spectral content at low frequencies and the skewness will be zero.

REFERENCES

[1] Pandrea, N., Parlac, S., Mechanical vibrations, Pitesti University, 2000.

[2] Roberts, J.B., and Spanos, P.D., Random Vibration and Statistical Linearization, John Wiley, New York, 1990.

[3] Roberts, J.,B., Local Similarity In Nonlinear Random Vibration Jurnal of Applied Mechanics, 1988

[4]Stan, M, The fluid mechanics, Bucharest, 2004.

[5] Munteanu, M., Introduction to dinamics oscilation of a rigid body and of a rigid bodies sistems, Clusium, Cluj Napoca, 1997.

[6] Stan, P., Stan, M., The power spectral density of response for non-linear structure to random vibration stages, 4^{rd} International Conference, Computational Mechanics And Virtual Engineering, Brasov, 2011.

[7] Stan, M., Stan, P., Random vibration of single-degree of freedom systems with stationary response, Computational Mechanics And Virtual Engineering, Brasov, 2011.

[8] Stan, M., Stan, P., The power spectral density of response for n random excitations of a non-linear oscillator with nonlinear damping characteristic in the fluid medium, International Conference of mechanical engineering, ICOME, Craiova, 2013.

[9] Stan, P., Stan, M., The power spectral density of the response for Duffing oscillator with non-linear elastic characteristic, International Conference of mechanical engineering, ICOME, Craiova, 2013.