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Abstract: The present paper consists of discussion on dynamic response of oscillators under random load. This paper is 

concerned with forced oscillations of fluid. A major problem of fluid dynamics is that the equations of motion are non-linear. 

Therefore, it is necessary to replace the nonlinear system with an equivalent linear system. Method of equivalent 

linearization has been extensively used in these engineering applications. A substantial reference list of workin this area can 

be found in Roberts and Spanos. In general, and especially in random vibration analysis, it is difficult to obtain a closed form 

solution for dynamic response of a nonlinear system.  
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1. INTRODUCTION 
 

 Nonlinear dynamic systems subject to random excitations are frequently met in engineering practice. The 

basic idea of the statistical linearization approach is to replace the original nonlinear system by a linear one. 

They are random processes and commonly described by spectral density functions. A major problem of fluid 

dynamics is that the equations of motion are non-linear. This implies that an exact general solution of these 

equations is not available. 
 

 

2. SYSTEM MODEL 

 

We consider a U-shaped pipe with rough inner surface with constant section diameter d, in which there is a 

liquid with known density 0ρ . If there is a random disturbance occurs at a certain time t elevation h (t). Decrease 

in the first branch [4,5] and the second liquid fluid up. We believe that rubbing the tube is nonlinear. 

The ordinary differential [1,2] equation of the motion can be written as: 
3.. .

( ) ( ) ( ) ( )mh t ch t k h t W t+ + =                       (1) 

where m is the mass, c is the viscous damping coefficient, W(t) is the external excitation signal with zero mean 

and ( )h t  is the displacement response of the system. ( )hS ω and ( )WS ω  are the power spectral density for 

( )h t and the external excitation ( )W t respectively. 

Dividing the equation by m , the equation of motion can be rewritten as: 
3.. . 2

( ) 2 ( ) ( ) ( )
g

h t ph t h t w t
l

ξ+ + =                       (2) 

whereξ is the critical damping factor and p is the undamped natural frequency, for the linear system. 

By linearization [2,3] of the equations of motion we find the following linear equation: 
.. . 2
( ) ( ) ( ) ( )ech

g
h t h t h t w t

l
φ+ + = .                     (3) 

This linearization system introduces an error that has to be as low as possible so minimal. The difference is the 

difference between the nonlinear stiffness and linear stiffness terms [2,3,6], which is 
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3. .

2 ( ) ( )echp h t tε ξ φ η= −                         (4) 

The value of echφ  can be obtained by minimizing [2,6,7 ] the expectation of the square error  

2[ ] 0
 ech

E ε
φ
∂

=
∂

                          (5) 

Because 
6 2 4. . .

2 2 2 2{ } 4 { } { } 4 { },ech echE p E h E h p E hε ξ φ ξ φ= + −                   (6) 

we obtain next equation 
2 4. .

{ } 2 { } 0echE h pE hφ ξ− = .                       (7) 

Because 
4.

2.

{ }
2

{ }

ech

E h
p

E h

φ ξ= ,                          (8) 

obtain 
4.

.. .

2.

{ } 2
( ) ( ) ( ) ( )

{ }

E h g
h t c h t h t w t

l
E h

+ + = .                      (9) 

The displacement variance [1,2,7] of the system under Gaussian white noise excitation can be expressed as 

2
0(0) ( )h

h
R H mS dσ ω ω

∞

−∞
= =∫                         (10) 

Because we have the following equation for the transfer function [1,7,8]  

4.

2 2

2.

1/
( ) ,

{ }
2

{ }

m
H

E h
p i p

E h

ω

ω ωξ

=

− +                          

(11) 

the displacement variance can be expressed [1,8,9] 

( )

2 0 0

2 2 4.4. 2
2 3

2 2 2 2 2
2.2.

4 1
,

{ }{ } 14 1 2
{ }{ }

h

S S
d

l d
d E hE h l pp p

E hE m

π
σ ω

ρπ
π

ρ ξω ω ξ

∞

−∞
= =

        + − + +  
       

∫               (12) 

where  
4.

2.

{ }
2 1

{ }

e

E h
c pm

E h

ξ

 
 

= + 
 
 

                          (13) 

The set of conditions that guarantee the existence of the Fourier transform is the Dirichlet conditions, which may 

be expressed as: the signal ( )h t  has a finite number of finite discontinuities and the signal ( )h t contains a finite 

number of maxima and minima. 

Using the transfer function [1,8,9] we obtain the answer as a function of frequency 

( ) ( ) ( )h H Wω ω ω
− −

= ,                            (14) 

where 

( )h ω
−

= F ( ( ))h t ,                             (15) 

( )W ω
−

= F ( ( ))W t .                            (16) 

In this way, the power spectral density of the response for the system is 
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4.

2 2 2

2.

( )
( )

{ }
2

{ }

h

WSS

E h
m p i p

E h

ω
ω

ω ωξ

=
 
 

− + 
  

.                      (17) 

 

 

3. THE NUMERICAL RESULTS 

 

The Duffing oscillator has been used to illustrate this procedure here. Figure 1 was obtained for spectral 

density of excitation 
2

0,5FS N s= ⋅ , with parameters 
3

23 , 910 , 1,5
kg

l cm d cm
m

ρ= = = . 

The broadening of the first resonant peak is described very satisfactorily by the approximate solution. 

Obtain in this case for the displacement variance 

2 0

4.

2.

{ }
2 1

{ }

h

S

E h
pk

E h

π
σ

ξ

=
 
 
+ 

  

                           (18) 

The power spectral density of the response 
2( ) [ ]hS m sω ⋅ , for Gaussian white noise with spectral density 

function 0 0,5
N m

S
s

⋅
= , is plotted for the differents parameters in fig 1. 

By adding the formula 
4 2. .

245
{ } { }

4 h
E h E hσ= ,                           (19) 

we obtain the equation of the system with solution 2 20,006827
h

mσ = . 

 
/ 2ω π  

Figure 1. The power spectral density of the response 
2

( ) [ ]hS m sω ⋅ for 
3

23 , 910 , 1,5 .
kg

l cm d cm
m

ρ= = =
 

 

The power spectral density of the response 
2( ) [ ]hS m sω ⋅ , for Gaussian white noise with spectral density 

function 0 0,5
N m

S
s

⋅
= , is plotted for 

3
23 , 850 , 1,5

kg
l cm d cm

m
ρ= = =

 
in fig 2. we obtain the equation of the 

system with solution 2 20,009827
h

mσ = . 

 



 265 

 
/ 2ω π  

Figure 2. The power spectral density of the response 
2

( ) [ ]hS m sω ⋅ for 
3

23 , 850 , 1,5
kg

l cm d cm
m

ρ= = = . 

 

 

4. CONCLUSIONS 
 

Figure 1-2 show a good agreement between theory and experiment. Detailed numerical results are presented for 

of nonlinear oscillators under white noise excitation. The power spectral density of the response will not have a 

large spectral content at low frequencies and the skewness will be zero. 
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