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Abstract: Random vibrations are extensively used in transportation, wind and earthquake. Exact solutions for random 

excitations are very limited, particulary when the material behavoir is hysteretic, having a multi-value forced deformation 

pattern with non conservative energy dissipation. Also information about the need mathematical apparatus is included. 

Formulation of the equivalent linearization has been used to analyze system using differential mathematical models with 

approximed solutions. In equivalent linearization method the governing set of nonlinear differential equations are replaced 

by an equivalent set of linear equations, and the difference between the sets being minimized in some appropriate sense. The 

results obtained from the method are validated by simulation results. 
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1. SYSTEM MODEL 
 

Consider the system composed of two disks with moments polar mass inertia J [ 2
kg m⋅ ] mounted on shafts 

torsional rigidity K1, K2, [Nm rad] with negligible mass. 

We consider the angles 1θ  and 2θ  snapshots of the disks in compared with the the position of static equilibrium 

and ( )M t is the random cuple. Using the principle of d'Alembert [1,3] (dynamic equilibrium of external torques 

and inertia), equation of the motion are written in the following form 
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The linear equation [2] can be write 
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The nonlinear factor β  controls  the type and degree of nonlinearity in the system. 

The difference between the nonlinear stiffness and linear stiffness terms is 
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The value of 1eK  and 2eK can be obtained by minimizing [2] the expectation of the square error 
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Neglecting wery small terms we get 
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Using the Fourier transform of equation [1,3] and having the relations 
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obtain for the response 
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where 
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The frequency response function [5,6] of the system is give by equation 
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The mean square value for the displacement [1,2] of the system  is given by equation 
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and for the second structure 
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where 
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Obtain for the first disk 
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The power spectral density of response [1,6,7] for the first disk is given by equation 
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and the power spectral density for the second structure ( in 2
rad s⋅ ) is given by equation 
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So, the power spectral density of response will be 
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2. NUMERICAL RESULTS 
 

As a numerical example, a disk-shaft systems with systems with two degrees driven by both narrow- and 

wide-band excitations is considered. The results of the study show the following.  

Considered 250J kg m= ⋅ , 6
1 2 7 10 /K K N m rad= = ⋅ ⋅ , 21MS N s= ⋅ by four identical columns of Young’s modulus 

110, 2 10E Pa= ⋅  and height 2h m= , with the diameter 0,5d m= , the damping factor 0,25ξ = , the nonlinear 

component 3( ) ( )G tη η= , with the nonlinear factor to control the type and degree of nonlinearity 220mα −= , and 
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Fig.1. The power spectral density of the response 2
1( ) [ ]S rad sω ⋅  for the first disk. 

 

The value of 1eK  and 2eK are 
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The power spectral density of the response for the first disk, in this case, is 
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and the power spectral density of the response for the second disk is 
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Fig.2. The power spectral density of the response 2
2 ( ) [ ]S rad sω ⋅  for the second disk. 

 

 

CONCLUSIONS 

 
The method has been proposed for determinate the power spectral response is based on considering the non-

linear system to behave as a linear system having varyng natural frequency.  
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