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Abstract:  This paper is an examination of the airflows in mushroom growing rooms. An experimental investigation of the 

nature of the flows in Irish tunnels showed them to be of low magnitude at the crop but controllable in principle for single 

and 3 layers growing shelvets. The provision of air flow solutions for the wide range of new growing systems would be 

difficult using empirical methods alone and therefore a modelling approach was sought to complement and aid the 

experimental work. In the application to mushroom growing structures, the principles of the application of CELS3D to flows 
around obstructions in the flow domain were examined and the difficulties identified. 
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1. INTRODUCTION 
 

This paper presents a the study of airflows in mushroom growing structures. Although we analyzed the 

conditions for different types of fungi, we have focused attention on the growing Agaricus bisporus. Mushrooms, 

as a crop, do not photosynthesise and have no specialised fluid transport system equivalent to the green plants 

vascular system. Water is transported by capillary action between the cells and fungal strands that make up the 

organism and osmotically by the cells themselves. In order to have the control over the growth of the organism it 

is necessary to gain control of the evaporative conditions at the cropping surface, i.e. the crop micro-climate. 

Control the environment in a mushroom mean manipulation of evaporation power of the air, which is usually 

defined as the product of gap vapor pressure and air velocity [4]. Thereby, achievement of properly designed air 

flow in the across the of crops in the developing is essential to the success of the production process. 

The mushroom crop, during 70 days production cycle, moves through a number of phases of development. In the 

first two phases (21-30 days) of vegetative development where strands of fungal mycelium colonise the compost 

that supplies its nutrients and water, air speed at the crop is not a critical quantity [9]. Air at this time functions 

largely as a medium for the removal of heat produced by the metabolic reactions in the mycelium. After this 

period the inoculated compost is placed in special growth rooms for a period of 38-42 days. The microclimat 

condition at this stage of the process (according to manufacturer's recommendations) is presented in the graph 

below. 

 

 
Figure 1: Microclimate parameters in mushrooms groving room (for Agaricus bisporus) 
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In order to achieve the correct conditions of evaporation, the vapor pressure deficit control is relatively easy for 

air humidity, can be added to the steam or fine mist injected or removed by passing air over the heat exchanger. 

Setting the correct airspeed is more difficult and, in particular, to ensure uniformity across the surface conditions 

of a culture requires airflow to be well understood for different cropping structures. 

There are a number of different commercial mushroom-growing systems in Europe and in the United States. All 

the production is carried out indoors and there are a variety of growing systems and associated structures. Some 

growing rooms are approximately square or rectangular in section and others are curved, polyethylene-covered 

tunnels with a variety of cross-section shapes that can deviate markedly from a semi-circle. 

The square geometries are used traditionally for multi-tier growing and these pose the greatest difficulties in the 

provision of uniform air flow at all points on a cropping surface. 

 

 
Figure 2: Schematic of an American mushroom 

growing room 

Figure 3: Schematic of an Irish mushroom-growing 

tunnel 

  

While a full measurement programme that could be used to validate the output from a mathematical flow model 

was not implemented in time for use in this work, an experimental investigation of the general characteristics 

and some important features of the air flow in Irish mushroom-growing tunnels was carried out. 

A crucial relationship in the air-delivery system is the relationship between the speeds at the apertures on the 

distribution duct and the corresponding speeds at the cropping surface. The air delivery system in an Irish 

mushroom growing tunnel, has the advantage that it allows high exit speeds (4 to 7 m/s) at the distribution duct 

and hence a large volume of air to be supplied while providing the very low air speed that is required for the 

microclimate at the growing surface. The provision of a speed control for the fan means that the grower has 

control of the air exchange rates at the crop and a damper system provides a controllable mixture of the fresh and 

the recirculated air. The damper is used to provide control of the carbon dioxide concentration in the tunnel and, 

with suitable outside conditions, can be used to. Since the air speed at the crop depends partly on the attenuation 

of the airflow by the tunnel structure and there are many variations in the number and size of holes in the 

distribution ducts as well as varying models of axial fans with slightly different pressure/output characteristics, it 

would be anticipated that there would not be a general relationship between the duct exit and the cropping 

surface air speeds but that the characteristic should be similar in most cases. 

An important practice for high quality production is the quick drying of the surfaces of the mushrooms after 

watering. If a mushroom surface remains damp then there is a threshold level of bacterial population that can be 

exceeded and brown patches or surface pitting can occur [9]. 

To determine and find a solution as close to the ideal condition of ventilation, have developed several theoretical 

and practical models. The results are characterized by near constant sliding velocity jets of air to the surface of 

the harvest, the recommended ideal speed 0.4 m/s. 

Measurements for different ventilation systems with one, two or three main ventilation tubes led to the 

development of mathematical models of analised phenomena that occur during operation. 

 

  
Figure 4: One-duct air distribution  

system+deflectors 

Figure 5: Orizontal two-duct air  

distribution system 
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Figure 6: Vertical two-duct air distribution 

system 

Figure 7: Three-duct air distribution system 

 

Some graphical representations of the data collected during the tests are shown in the accompanying graphs. 

 

 
Figure 8: Cropping surface air speed during  

heating (6 m/s at duct exit) 

Figure 9: Air speed and temperature for  

a pulsed heating system. 

 

Results showed the need for installing additional piping to obtain a homogeneous mixture of air and sliding 

speeds close to the limit of the evaporation. 

 

 
Figure 10: Schematic diagram of a two duct air distribution system. 
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2. THE EQUATIONS OF FLUID FLOW 
 

The equations that are used to describe fluid flows for the purposes of this thesis share a common form in that 

they all obey a generalised conservation principle, i.e. there is a balance between the factors that influence a 

given dependent variable. These are discussed in the book by Patankar (1980) and, if the dependent variable is 

, then: 

at              (1) 

where is the diffusion coefficient, S is the source term, t is time,  is the density and u is the velocity vector. 

The dependent variable will be the velocity components, temperature and turbulence parameters. The 

diffusion coefficient and the form of the source term S are different for different dependent variables and an 

appropriate meaning has to be given in each case. 

The other constraint on the flow fields is the continuity or mass conservation equation, given by: 

                 (2) 

For the isothermal air flows considered in this thesis, density changes are taken as negligible [5] and the 

continuity equation reduces to: 

                  (3) 

 

 

3. A MODEL FOR THE DESCRIPTION OF TURBULENCE 
 

Observation has shown that the flow in mushroom growing tunnels is turbulent in nature and that modelling of 

the airflows involved would require that the effects of turbulence be calculated. There is much general work in 

the field of turbulent flow calculations and many publications describe work that makes use of techniques similar 

to those used in the TEACH code. The standard k-e turbulence model [6] which is included in the TEACH 

package is taken as the means of describing turbulence for the purposes of this analise. There are a number of 

modifications that can be made to the details of this modelling [12] but until it is possible to carry out some 

model validation in the mushroom growing room application there is little basis for changing from this 

formulation of the k-s equations. For example, Rahnema et al. (1996) implemented a modification in the e 

equation for re-circulating flows whilst Liu et al. (1996) compared three D models for predicting the ventilation 

air jets, both planefree and plane-wall. They found that the simulations on a number of different grid densities 

predicted the fluid velocity decay and velocity profile well but over-predicted the jet spread and entrainment 

ratios by 20 to 40%. A modified turbulence model may ultimately be required for the jets and flow along walls 

that are part of mushroom tunnel ventilation [4]. 

Patankar et al. (1977) presented the numerical prediction of the three-dimensional velocity field of a deflected 

turbulent jet. This study incorporated the hybrid differencing scheme and a line solution technique making use of 

a sequential/segregated approach to an iterative scheme. 

Rodi (1980) described in detail the various turbulence models and their applications and evaluated the models 

with regard to their predictive capability and computational effort. 

Nallasamy (1987) presented a brief account of various turbulence models employed in the calculation of  

turbulent flows, and evaluated the application of these models to internal flows by examining the predictions of 

the various turbulence models in selected flow configurations.  

Numerical calculations were presented by Hjertager and Magnussen (1981) for two jetinduced three-dimensional 

flows in rectangular enclosures [5].  

Choi et al. (1988 and 1990) applied the k-e model in the prediction of the air flow in a slot-ventilated enclosure 

and for flow around rectangular obstructions [1]. They modified the TEACH code to predict two-dimensional, 

isothermal air flow patterns and air velocities. 

Maghirang and Manbeck (1993) studied the air space of the ventilation slot, which was very similar to the 

general state of the flow in chambers of growth of the mushrooms. They modelled the airflow and the transport 

of neutrally-buoyant bubbles using the k-s turbulence model [10]. 

Comparison between the numerical simulation and experimental results showed good correspondence in the 

velocity fields and bubble trajectories. 
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4 APPROXIMATION OF THE EXACT EQUATIONS 
 

The equations for turbulent flow have their origin in the conservation laws and these give rise to the exact 

description of a turbulent flow [3], [4], [7]. The computing resources required for solving the exact equations are 

large due to the scale of the turbulent elements in a flow relative to the extent of flow domains. 

Many of the features of DS can be retained while computing higher Reynolds number flows in the large-eddy 

simulation (LES) technique. Using a space-filtering procedure, the mean and the large-eddy fields are resolved 

but the fields smaller than the sub-grid scale have to be mathematically modelled. The instantaneous field can be 

decomposed as: 

                (4) 

where  is the filtered (resolved) field, while is the residual (unresolved) fluctuation. 

Reynolds decomposition is the technique applied and in this the instantaneous values of the dependent variables 

in the conservation equations (velocity component Ui, pressure P and the scalar quantity  are separated into 

mean and fluctuating quantities: 

                   (5) 

                    (6) 

As the energy is contained mainly in the large-scale fluctuations this is a velocity scale for the large-scale 

turbulent motion and, with the eddy viscosity concept, comes the Kolmogorov-Prandtl expression (Rodi, 1980): 

                 (7) 

The dissipation s is usually modelled as [4]: 

                   (8) 

The modelled k equation, as used in TEACH, is [4] (using tensor notation): 

             (9) 

Diffusion, generation and destruction terms require modelling and the outcome as applied in this work is the 

following (Rodi, 1980): 

            (10) 

Along with the relation, from equations (3.9) and (3.10): 

                 (11) 

The k-s model has become popular and, as a consequence, is one of the most widely tested models. The  

onstants, for high Reynolds number flows, are determined by examining a number of special cases of the 

modelled k-s equations and a widely used set is due to Launder and Spalding (1974). These values of the 

constants are  = 0.09,  = l , = 1.44,  = 1.92, = 1 and =1.3 and they are the values used in all the 

work presented in this analise. The derivation of discretisation equations for the finite volume method are 

wellknown and there is a lucid presentation in Patankar (1980). 

               (12) 

The measure of convergence is a given reduction of the residuals for all of the equations to be solved. For 

equation (4.1), the residual is defined as: 

              (13) 

Writing the discretised equation as: 

              (14) 

for .=1,2,3,..... ,N which relates the dependent variable to the neighbouring points  and For the 

boundary condition equations set  = 0 and  =0 so that values outside the calculation domain play no role. 

                (15) 

 

              (16) 
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               (17) 

 

               (18) 

 

 

 

5. CONCLUSION 
 

Using mathematical modeling methods TEACH, CELS3D, the reasercer James J. Grant (2002) obtained model 

generation flow in different types of farming systems mushrooms. Irish case of the tunnel type is shown in the 

following charts. 

 
Figure 11: Air flow pattern in a structure with 

an in-curving wall base. 
Figure 12: Air flow across shelves with a 

deflector  (Re=3500). 

 
The number of variations in the cropping systems and the variations in air distribution make the empirical 

approach to optimising airflow in mushroom tunnels very timeconsuming and tedious. The use of flow models 

and computational fluid dynamics would be a useful part of a problem-solving framework. If a flow model could 

be validated in a number of situations then the programmes could be used to guide theexperimentation for new 

situations and could drastically reduce the time required to provide the systems that would deliver a suitable 

airflow at all times. 
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