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 Abstract—A proof of the formulae used in the conjugate 
directions method for solving linear algebraic systems of 
equations is presented. The proof is based on the minimization 
of a functional connected with a change of variables, and differs 
from the proofs presented by other authors. It permits an 
accessible but deep understanding of the procedure removing 
some confusions of literature, and allowing new remarks. Some 
results may be easily verified by using Maple-soft programs. 
 Index Terms—Linear algebraic systems of equations; 
conjugate directions method; conjugate gradient method. 

I. INTRODUCTION 

 Among the methods for solving linear algebraic 
systems of equations, one of the best is the conjugate 
gradient method (for which we shall also use the 
denomination of conjugate directions method that 
seems more adequate), a good example being its use in 
the finite element method [1-3], where large systems of 
equations occur. The formulae used for applying this 
method have been derived in literature in various ways. 
We should add that there are various sets of formulae 
proposed by different authors. We shall shortly recall 
the typical variants for establishing the used formulae.  
 In a first variant [4, Part 2, p.167, 171], the formulae 
have been obtained by a congruent transformation 
containing a dyadic decomposition and an endogenous 
transformation, in fact by multiplying the matrix of 
coefficients with a normalization matrix and the 
transpose of the matrix of coefficients. Hence a 
normalization of the system is performed. Then, the 
obtained quadratic matrix is transformed into a diagonal 
one. 
 In a second variant, a set of formulae [5, p. 243] has 
been established by utilizing the iterative method with 
common steps and convergence acceleration 
coefficient, i.e., the method of Richardson, and putting 
the condition that the rests (residuals) of the system of 
equations be conjugate versus a certain symmetric 
matrix.  
 In a third variant [3], we have considered that for 
establishing the set of formulae it would be convenient 
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to utilize the minimization of a functional. We have 
chosen for applying this procedure, the set of formulae 
of [5] (for which we prepared a computer program), 
which we found very efficient in many numerical 
experiments concerning practical applications in 
calculation of electromagnetic devices [2]. 
 The procedure of [3] was criticised in Zentralblatt für 
Mathematik and the main argument has been that “The 
recursion relation for the conjugate gradient method is 
derived from a local optimization property. Optimality 
in the entire Krylov subspace is claimed in an indirect 
way, but it is not proved“. We consider that this 
argument contains two inaccuracies as follows:   1° The 
minimization of a functional (there has been no 
optimization in general) or of a function of several 
variables is a problem of mathematical analysis and has 
nothing to do with Krylov subspace; 2° In several cases, 
the local minimum coincides with the global minimum. 
In fact, in the known papers in literature, many manners 
of presenting the method do not show a consistent 
procedure. Some of them start with the statement that 
the formulae would be based on a minimization 
procedure, and the necessary functional is written in the 
known form. However, further the derivation of many 
formulae is carried out by resorting to linear algebra 
including eigenvectors and assuming that rounding 
errors do not exist. Also, the finite number of necessary 
iterations is establishes by the same way. For this 
reason, since the conclusions are obtained for the case 
in which rounding errors do not exist, a supplementary 
proof should be included for to prove that the 
minimization of the functional takes place even in the 
case when rounding errors exist. Moreover, several 
questions remain unproved, for instance in the case of a 
symmetric positive definite matrix of coefficients, the 
pre-conditioning matrix should also be positive 
definite. Therefore, the usual manner of studying the 
method could be estimated as eclectic. 

We consider that a consistent manner for deducing 
the formulae and studying the method should be based 
on the same principle for each property. 

Having in view the mentions above, we consider that 
it would be useful to present a derivation of the 
concerned set of formulae, based consequently on a 
minimization procedure connected with a change of 
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variables, which is a general one, without resorting to 
proper values or to Krylov subspace, and proving that it 
leads to the global minimum, hence removing the 
mentioned doubts. The used procedure also allows for 
several analyses. 

II. PRINCIPLE FOR ESTABLISHING THE COMPUTATION 
FORMULAE 

Further on, we shall denote the square matrices by 
capital bold upright letters and the column matrices 
(vectors) by small bold upright letters. Let: 
 

,bxA =  (1)
be a system of linear equations, where A is a symmetric 
positive definite matrix with n rows and n columns. The 
solution of the system of equations (1) minimizes the 
functional:  

( ) [ ]ij
TT aF =−= AbxxAxx ,

2
1 . (2)

 

 In all formulae, the product of two vector matrices is 
performed via transposition. 
 As known, F being a function of several variables, the 
values of these which rend the minimum must satisfy 
several conditions, the first being the following:  
 

[ ]ni
x
F

i
,1,0 ∈∀=

∂
∂ . (3)

 

 From relations (2) and (3) there follows: 

[ ]nibxa ijij

nj

j
,1,

1
∈∀=∑

=

=

. (4)

 

 Therefore the values of ix  which could minimize the 
function F represent just the solution of (1). In the 
considered case, the solution is unique, and the 
minimum should be a global one. 
 There remains to establish a procedure for to 
minimize the concerned function. For this purpose, an 
iterative procedure has been chosen. Let us use for the 
first step (iteration) the formula: 
 

)0(
0

)0()1( pxx a+= , (5)

where )0(x  represents the starting (initial) value 
attributed to the vector (column matrix) of the 
unknowns to be determined. Also, 0a  and further ma  
are coefficients to be determined for the functional (2) 
to be minimized, whereas )0(p  is a starting vector. Any 
further iteration of order 1+m  will be: 
 

)()()1( m
m

mm a pxx +=+ , (6)
 

and the expression of the rest (residual) of iteration m 
will be: 

,)()()1()1( m
m

mmm a pAxAbxAbr −−=−= ++ (7)
therefore: 

,)()()1( m
m

mm a pArr −=+  (8)
 

where the following symbols have been used: 
ma  – coefficient at iteration m; 

m   – iteration ordinal number; 
n    – number of equations; 

)(mp  – column matrix (vector) at iteration m; 
)(mr  – column matrix (vector) of the rest (residual) at 

iteration m. 
 For any iteration of order 1+m , we may write: 
 

( ) ( ) ( )
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III. THE CHANGE OF VARIABLES 

 In order to fix the ideas, and facilitate some remarks, 
without losing the generality, we shall consider the case 

3=n . We shall take )0(x  as starting value and we shall 
write the first three iterations: 
 

.
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 (10 a, b, c)

 

 Correspondingly, the rests of the form 
xAbr −=  (11)

are: 

;

;

;

)2(
2

)1(
1

)0(
0

)0()2(
2

)2()3(

)1(
1

)0(
0

)0()1(
1

)1()2(

)0(
0

)0()1(

pApA

pArpArr

pA

pArpArr

pArr

aa

aa

a

aa

a

−−

−=−=

−

−=−=

−=

 (12 a, b, c)

 

and in general, the last equation above becomes: 
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 We may remark that for to minimize (2), in the case in 
which 3=n , we need to know the values of three 
quantities 321 ,, xxx  that constitute vector x. The vector 
x of (1) that is constituted by those three quantities can 
be expressed in function of the other three quantities of 
the set 210 ,, aaa  considered as exogenous variables. 
 For this purpose, we shall use relation (10 c). From 
formulae (10 a, b, c), it results that the solution 
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represented by vector sets x is expressed in a vector 
basis formed by the set of three vectors )2()1()0( ,, ppp  
assumed, firstly, as exogenous variables. If the 
quantities of the two sets are related to each other, we 
can consider the quantities ia  exogenous, while the 

quantities )(ip  as endogenous. Therefore the variables 
[ ]3,1∈∀ixi  will be changed (replaced) by the variables 
[ ]2,0∈∀iai , in expression (9).  

 The function to be minimized ( )321 ,, xxxF  becomes 
( )210 ,, aaaF :  
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or in general, for the case of a system with n equations: 
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(15)

 By replacing expression (12) into (3), and ia  instead 
of ix  we obtain: 
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(16 a, b, c)

where we have had in view the symmetry of matrix A, 
and relation (7). 
 There follows: 
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IV. THE COMPUTING FORMULAE  

A. Particular Case 
 From relations (17 a, b, c), we can determine the 
values of 210 ,, aaa  so that, every other quantity being 
supposed with fixed value, the relations will be 
fulfilled. We shall obtain: 
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 According to the structure of matrix A, it may be 
possible that )2(p  of (17 a, b, c) be equal to zero. Then, 
the solution will be given by relation (17 b). This 
circumstance means that the solution represented by 
vector x is obtained in a vector basis formed by the two 
vectors )1()0( , pp . 

B. General Case 
 Further on, we shall consider the case of a system 
with n equations. For more precision, a supplementary 
unknown coefficient mc  and a vector )(mz  will be 
introduced by the following relation set: 
 

,

;

;
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=

+=

=
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c  (19 a, b, c)

where M has been chosen as an invertible symmetric 
matrix of the same order as A, in particular it might be 

AM = . But, this case is not interesting because if we 
knew 1−M , the solution would be immediate. For 
reasons further shown, after formula (25), M should be 
positive definite. By this formula, each iteration 
includes the results of the previous two. Also, we 
should add that in accordance with relations (19 a, b, c) 
the vectors of the form )(ip  will be partially exogenous 

variables, if )0(p  has to be introduced. With the above 
described relations, the expression of the functional can 
be written as follows: 
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 The first condition of minimum requires that the 
derivatives of the first order of the functional with 
respect to the unknown coefficients ma  and mc  are 
equal to zero. Therefore we shall obtain the condition 
for the derivatives of the first order: 
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and 
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(22 a-d)
be zero. Multiplying relation (8) by )1( −mp , we get: 
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m

mTmmTm a pAprprp −−+− −=  
(23)

 Taking into account expressions (21 d) and (22 d), 
relation (23) yields: 
 

( ) .0)()1( =− mTm pAp  (24)
 

 The other conditions require the calculation of the 
derivatives of the second order of the functional. Taking 
into account relations (8), (19 b) and (21), we shall 
obtain:  
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and since (25 b) is positive because the matrix A has 
been chosen positive definite, the expression (25 i) must 

also be positive, hence matrix M should be positive 
definite. 

Similarly, we shall obtain: 
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 Taking in view relations (21), (6), (19 b), (7), (22 d) 
and (24), we shall obtain:  
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(27 a-d)
 From the three relations above, there follows that the 
conditions of minimum are fulfilled as below: 
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 From relation (21 a) and (19 b), there follows: 
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wherefrom: 
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 From relation (22 d), there follows: 
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 From relations (27 a), (7), (19 b), (21 d) and (24), 
there follows: 
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wherefrom: 
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 Multiplying relation (19 b) by )1( +mr , we have: 
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and considering relations (21 d) and (22 d), we find: 
 

( ) ( ) 0;0 )1()()1()( == ++ mTmmTm zMzrz  (35 a, b)
 

 Multiplying relation (19 b) by )(mr , and taking into 
account (21 d), there follows: 
 

( ) ( ) .)()()()( mTmmTm rzrp =  (36)
 We shall now use relation (36) for obtaining other 
expressions for ma  and mc  emphasising the matrix M.  
If we replace expression (36) into (30), we shall get: 
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 Multiplying both sides of (8) by )(mp  and 
considering expression (21 d), we get: 
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 The expression (33) can also be modified like (30). 
We shall start from relation (8) in the form: 
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where the index m has to be changed into (m-1). We can 
write: 
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We shall multiply both sides of (40) by )(mz , use 
expression (37) for replacing 1−ma  and remark that 
according to relation (39), because M is  symmetric, the 
first term in parenthesis vanishes. Replacing the result 
into (33), we shall get:  
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and finally: 
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 By minimizing the system of equations (1) with 
respect to the quantities 210 ,, aaa , the minimum, i.e., 

bxT

2
1

− , will be the same as minimizing with respect to 

the quantities ,,, 321 xxx  because we performed only a 
change of variables. 
 Using the formulae (6), (17 a, b, c) and (18 a, b, c) for 
the case with three variables, it follows that we achieved 
the minimization along three directions )2()1()0( ,, ppp . 
 Therefore, we may expect that after the third 
direction we reached the solution of minimum. It results 
that we have used a procedure with a finite number of 

arithmetic operations. The number of iterations, except 
the introduction of starting quantities will be 1−n , in 
the examined case, namely 2.  
 The final value, in the general case, after 1−n  
iterations, will be: 
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 However, it remains to prove that the obtained 
solution after 1−n  iterations corresponds just to the 
minimum, as explained in the next section. 
 If the precision is not satisfactory, the precision could 
be improved by continuing the iterations. No other 
proofs are necessary for these conclusions unlike the 
case in which the proof of formulae had been 
established using the properties of conjugation with 
respect to a symmetric positive definite matrix. 

V. VERIFYING THE SOLUTION CONDITIONS  

 For the expression (45), together with (19 a, b, c), 
(37), (44), to represent the solution of (1), it suffices that 
the conditions: 
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(46)

are satisfied, as clearly specified, further, after formula 
(54). 
 For to verify it, there is necessary to establish the 
general relations between the pairs of quantities 

)()( , ji rr , and )()( , ji pp , and also between the 
quantities of both pairs. For this purpose, we shall start 
from relations (21) and (22). 
 By using those relations, we can obtain the results 
that we can put into two sets, according their form, 
related to (21 d), (22 d), or (24) respectively. The first 
example: From relation (21), putting 0=m , there 
follows: 
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and we put the result of (47) into the first set. From 
relation (22), putting 1=m , there follows: 
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and we put the result of (48) into the second set. 
Now, we shall consider relations (8), (21 d) and (22 d), 
and look for  
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rp

pAp

pArprp

T

T

TT

a

a

 (49 a-d)

and we put the result of (49 d) into the first set. 
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Similarly, considering the relations (8), (21), (19), 
(48) and (49), we have: 
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 (50 a-f)

but according to (19 a-c), and taking in view that matrix 
M  is symmetric, we obtain: 
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(51 a-j)
and we put the result of (51 j) into the first set. 
 Taking into account (50 a), (8), (49 d), we shall 
obtain: 
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 (52 a, b)

 

and we put the result of (52 b) into the second set. 
Afterwards, we can repeat the calculations starting 

with the factor )1(p , and so on. 
Finally, we can write, for the first set, the general 
relations:  

( ) [ ] [ ] ,;,1;1,0;0)()( jinjnijTi <∈−∈∀=rp
and 

(53)

( ) [ ] [ ] .;,1;1,0;0)()( jinjnijTi <∈−∈∀=pAp
 

(54)

The relation (54) remains valid even if the order of 
superscripts indices is taken conversely. 

Multiplying both sites of relation (13) with 
[ ]1,0,)( −∈∀ niip , taking into account relations (53) 

and (54), it results that the right-hand side is zero, and if 
the projections of a vector with n components on n 
independent directions is zero, it means that the 

considered vector, i.e., )(nr  is zero. Therefore the 
global minimum has been reached. 

All relations from this section can be easily verified 
by using Maple-soft programs, [6], prepared by the 
author for systems of linear equations. For instance, in 
the case of a linear system of algebraic equation with all 
coefficients rational numbers, the relations of type (54) 
are exactly fulfilled being an obvious confirmation of 
the deduction carried out.  
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