
A FOUR-NODED PLANE ELASTICITY 
ELEMENT BASED ON THE SEPARATION 

OF THE DEFORMATION MODES 
 

A. DÓSA1          D. RADU1

 
Abstract: This paper presents a four-noded quadrilateral finite element 
with translational degrees of freedom for plane elasticity problems, based on 
the displacement separation method, which is an unsymmetric stress-hybrid 
formulation. The element can reproduce exactly all the constant strain 
modes, has correct rank, is of high coarse mesh accuracy and has a very low 
shape distortion sensitivity. 
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1. Introduction 
 
The four-noded plane elasticity elements 

with translational degrees of freedom at 
nodes exhibit a high shape sensitivity in 
special to bending. According to MacNeal’s 
theorem [4], a four-noded trapezoidal 
element cannot have locking-free in-plane 
bending and constant strain deformation 
capability, while simultaneously satisfying 
the reciprocity and compatibility of the 
nodal displacements. In the literature 
several efforts have been made to improve 
the performances of quadrilaterals. Many of 
the approaches are based on relaxing some 
of the terms of MacNeal’s theorem.  

For example K.Y. Sze [10] introduces a 
selective scaling procedure that judiciously 
reduces the stiffness arising from the two 
bending stress/strain modes in the four-
node element.  

Another way to improve the bending 
capability of distorted quadrilateral 
elements is given by X.M. Chen et al. by 
using the quadrilateral area coordinate 
method. The resulting elements fail to pass 

the strict patch test, but pass patch tests in 
a weak sense [2].  

The QMS quadrilateral element presented 
in this paper is based on the method of 
separation of displacement modes, which is 
an unsymmetric formulation and hence 
relaxes the reciprocity requirement. An 
unsymmetric formulation given by S. 
Rajendran and K.M. Liew [9], E.T. Ooi, S. 
Rajendran and J.H. Yeo [5] led to the 
development of successful 8-node plane 
elements and 20-node hexahedron elements 
with high distortion tolerance and very good 
performances. In their formulation, the 
authors use two different sets of functions, 
one set as weighting functions to enforce 
compatibility and one as shape functions for 
the completeness of the displacement field.  

The formulation presented in this paper, 
instead of the second set of shape 
functions, uses displacement modes. The 
elements based on this approach are 
capable to reproduce exactly the nodal 
forces corresponding to any of the 
displacement modes used in the 
formulation of the element. As a result, the 
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patch tests are passed without any other 
special measures. Also the elements give 
exact answers for constant bending 
corresponding to the axes of the elements.  

Because there is no contamination 
between modes, no parasitic energy arises 
in the elements and hence high coarse 
mesh accuracy resulted for all the 
numerical test problems. 

 
2. The  Displacement  Mode  Separation 

Method 
 
The virtual work principle for a linear 

elastic body in internal equilibrium under 
the action of surface forces and in the 
absence of the body forces can be written as: 

 

∫ ∫
Γ Γ

=Γδ−Γδ
t

tdd Tu
n

T .0dˆdσ  (1) 

 
Here δd is a virtual displacement field, 

compatible with the displacement conditions 
on the boundary Γ,  are the surface 
tractions derived from the displacement field 
u and  are the prescribed boundary 
tractions on Γ

u
nσ

t̂
t. Relation (1) works correctly 

only if the displacement field u fulfills the 
continuity requirements. 

If the body is divided in finite elements, 
the involved fields can be approximated at 
element level. 

The virtual displacements are ad δ=δ P , 
where P is a matrix of conforming shape 
functions and δa is the vector of virtual 
nodal displacements. 

The real displacements are qu N= , 
where N is the corresponding matrix of 
interpolation and q is the vector of modal 
displacements.  

The internal stress field is: 
 

ddd
u qqu SNDCDCσ 11 === −− , (2) 

 
where C is the elastic compliance, D is the 

symmetric gradient operator, Nd and qd are 
the partitions of N and q respectively 
corresponding to the deformation modes. 

The boundary tractions  are computed 
from the interior stress field, using the 
traction-stress matrix T built with the 
components of the normal to the boundary 
of the element 

u
nσ

uu
n Tσσ = . 

The qd deformation mode vector can be 
obtained from the nodal displacement 
vector a of the element . aq dd H=

The derivation of Hd matrix involves the 
construction of the transformation a = G q, 
by evaluating the displacement modes at 
the nodal points. If matrix G is nonsingular, 
inversion gives H = G−1. Hd results by 
extracting from H the lines corresponding 
to the deformation modes.  

Inserting (2) in (1) results: 
 

0fL =δ−δ T
d

T aaa H .  (3) 
 
In (3) L is the leverage or connection 

matrix, which links the stresses to the nodal 
forces and f is the vector of nodal loadings: 

 
,dSTPL ∫

Γ

Γ=
e

T  (4) 

 

∫
Γ

Γ=
e

tT dˆPf . (5) 

 
Relation (3) must hold for any virtual 

nodal displacement vector δa. The element 
equilibrium equation results , 
where 

fL =adH

dk HL= , is the stiffness matrix of 
the element. 
 
3. The QMS Element 

 
The reference systems used in this paper 

are shown in Figure 1. The element has 
constant thickness h. The material is 
assumed to be homogenous and isotropic 
with module of elasticity E and transversal 
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Fig. 1. Four-node plane element 
 

contraction coefficient v. The eight degrees 
of freedom of the element are the translations  

of the nodes. 
The two local rectangular systems have 

their origin in the point: 
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and are oriented with the x, respectively x  
axes on the median lines of the element.  
 
3.1. The Internal Stress Field 

 
The stress field is based on the eight 

displacement modes of the element [3]. 
Relation qu N=  has the form (7):  

 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

α+−α+−+−

α++α+−−
=

⎭
⎬
⎫

⎩
⎨
⎧

8

2

1

2222

22

cos)(
2
1sin)(

2
1)1(10

sin)(
2
1cos)1(01

E
1

q

q
q

yvxyxvyxxvyvyx

yvxyxxyyvvxxy

u
u

y

x

M

 
where α is given in Figure 1. 

The first three modes characterized by the 
amplitude parameters q1, q2 and q3 are rigid 
body modes and do not introduce strains and 
stresses in the element. The next three modes 
are constant stress modes, or c-modes. The 
c-modes are conforming displacement 
modes. They are displacement patterns that 
produce constant stress states in the element. 

The last two modes are higher order modes, 
or h-modes. h-modes are nonconforming 
modes and correspond to constant bending 
of the axes x and x . They are illustrated in 
Figure 2, for the rectangular case. The c- 
and h-modes together form the d-modes 
(deformation modes). 

The resulting stress field (relation (2)) 
becomes: 
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3.2. The Boundary Displacement Field 

 
The boundary displacements on a given 

side of the element are linear functions 
of the displacements of the adjacent 
nodes. 

3.3. Finite Element Equations 
 
The connection matrix L can be evaluated 

in the following form: 
 

]LL[L hb= .  (9) 
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Fig. 2. The h-modes (higher order modes) for the 4-node plane stress rectangle 

 
Matrix Lb concentrates at the nodes the 

boundary tractions corresponding to constant 
stresses: 
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where Xij = Xi − Xj and Yij = Yi − Yj.  

Matrix Lh concentrates at the nodes the 
boundary tractions corresponding to linear 
(higher order) stresses:  
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where: c = cos(X, x), s = sin(X, x), 
c =.cos(X, x), ),(sin xXs = .  

Matrix G has the following form (12): 
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In order to reduce the effort of numerical 

computation, matrix Hd can be obtained 
following an idea of Bergan and Felippa [1] 
used for the inverse of a similar G matrix:  
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where: .  12
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where:  
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Since  is obtainable in closed form and 
R is of small dimension, the computation  

1
11
−G

of Hd is of low cost. 
 
4. Some Remarks on the Issue of Inter-

Element Continuity 
 
A more complete introduction to the 

herein formulation can be done with the 
help of the stress-hybrid principle [6], [7], 
[3]:  

 
  ∫ ∫ ∫

Ω Γ Γ

→Γ−Γ+Ω−=Π
t

stattddd T
n

TT dˆdσdσσ
2
1),σ( C .  (16) 
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Here σ is an assumed stress field in 
internal equilibrium in the domain Ω in 
the absence of body forces, σn is the 
surface traction on the boundary Γ, C is 
the elastic compliance, d is the boundary 
displacement field, and  stands for the 

prescribed boundary tractions on Γ

t̂

t. If σ 
is a displacement derived stress field 

uu DCσσ 1−== , where D is the symmetric 
gradient operator, and u is the assumed 
internal displacement field, equation (16) 
can be rewritten as: 

 
  ∫ ∫ ∫

Γ Γ Γ

→Γ−Γ+Γ−=Π
t

stattdduu,d Tu
n

TuT
n dˆdσdσ

2
1)( .  (17) 

 
Rendering functional (17) stationary gives: 
 

∫
Γ

=Γ−δ 0d)(σ uduT
n , (18) 

 

∫ ∫
Γ Γ

=Γδ−Γδ
t

tdd Tu
n

T 0dˆdσ . (19) 

 
Relation (18) enforces continuity on the 

Γ boundary in a weak sense and must hold 
for any admissible δσu virtual stress field. 
Relation (19) is identical with (1), 
introduces the static equilibrium conditions 
and must hold for any δd virtual boundary 
displacement field.  

Using relations (18) and (19) at finite 
element level leads to symmetric stress-
hybrid elements. In this case displacements 
d are linked to the nodal displacements and 
are conforming, while displacements u have 
free parameters and are nonconforming. 
Enforced at finite element level, relation 

(18) becomes a weak conformity condition. 
It is easy to observe that for rectangles and 
parallelograms relation (18) has no effect, 
since the boundary integral is zero for  
in any mode and (d-u) in any mode. In these 
cases free incompatible displacements can 
develop. Unfortunately in the case of 
distorted shapes this relation is too 
restrictive and introduces excessive energy. 
If the nonconforming displacements u are 
linked to the nodal displacements, 
neglecting condition (18) leads to an 
unsymmetric formulation. In this case the 
weak conformity condition is replaced by a 
built-in nodal continuity condition and the 
inter-element continuity is no more strictly 
controlled. However due to the less 
restrictive conditions, in some cases, like in 
Figure 3a, even pointwise inter-element 
continuity is possible, while the 
corresponding symmetric formulation leads 
to poor results.  

u
nσδ
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Fig. 3. Deformed adjacent elements: a) constant bending;  b) linear bending 
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5. Numerical Experiments 
 

5.1. Mesh  Distortion  Test  for  Beam 
Bending 

 
In the Figure 4 is shown a cantilever 

beam modeled by two elements. The 
distortion of the elements is characterized 
by the eccentricity e. The two load cases 
correspond to constant bending and linear 
bending. The displacements of node “A” 

are given in Table 1. 
The reference nodal displacements aREF 

used in the table are computed according 
to the beam theory. The relative error norm 

is 
REF

REFQMS
r a

aa −
=ε , where ⋅  is the 

Euclidian norm. It can be observed that 
there is no distortion sensitivity in the 
constant bending case.  
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Fig. 4. Cantilever beam (t = 1, E = 1500, ν = 1/4) 

Table 1 
Tip displacements and relative error norms for the cantilever beam 

Case A Case B 
e 

vA εr vA εr

0 100.00 5.4 ⋅ 10−14 96.25 0.0688 
0.5 100.00 6.0 ⋅ 10−14 96.44 0.0669 
1 100.00 4.5 ⋅ 10−14 97.00 0.0614 

4.999999999 99.99 5.4 ⋅ 10−5 114.99 0.1250 
exact values 100.00 0.00 103.00 0.00 

 
5.2. Cook’s Membrane Problem 

 
The elements used in this example are: 

the standard biliniar isoparametric 
displacement element Q4, The enhanced 
strain element QM6 of Taylor, Beresford 
and Wilson [11] and the enhanced mixed 
element QE2 by Piltner and Taylor [8]. 

 
6. Conclusions 

 
QMS, a four node quadrilateral plane 

elasticity element has been suggested, which 

possesses high coarse mesh accuracy. The  
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Fig. 5. Cook’s membrane problem 
 (t = 1, E = 1, ν = 1/3) 
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Table 2 
Displacements vA for Cook’s membrane problem 

Mesh Q4 QM6 QE2 QMS 
2x2 
4x4 

11.85 
18.30 

21.05 
23.02 

21.35 
23.02 

22.76 
23.43 

16x16 23.43 23.88 23.88 23.91 
 

element is based on the deformation mode 
separation method, which is an 
unsymmetrical stress-hybrid formulation. 
The element passes the constant stress 
patch tests and presents high coarse mesh 
accuracy and low mesh distortion 
sensitivity. However further tests and 
theoretical investigations are necessary to 
establish the limits of applicability of the 
element and to get full confidence in this 
formulation. 
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