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Abstract: This work presents the mathematical method for solving the differential equations by means of which we can 

determine the stresses in the plane composite plates used to build crafts (the impregnation resin is NESTRAPOL 450). The 

results analytically determined are compared with the experimental ones.  
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1. INTRODUCTION 

 

The fundamental researches on the composite materials (with material orthotropy) are in process of 

development. By applying the elements of “The elastic theory” to the composite plates normally and in median 

plane stressed, the differential equations of strained median surfaces for deflected plate (0,5w5h) are: 
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By analyzing the equation system (1) and comparing it with the equation system for isotropic plate (steel or 

aluminum) we note the appearance of stiffness on the two directions which changes the structure of solutions. 

The equation system (1) has as unknowns the stress function F(x,y) and the deflection w(x,y), which can be 

determined by means of the boundary conditions for various supporting ways (rigid fixing, simple or free side 

suspension). In the previous work, the special forms of equation system (1) have been presented, from which we 

are interested in particular, in the rigid plate with small deflection (w   0.2h) of the following form: 
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The presence of a small strain of the plate means that the ship‟s shape changes very little due to the water action, 

the stream lines don‟t change very much  and the heading resistance doesn‟t increase very much due to the hull 

„s strain. 

The mathematical resolution of differential equation system (1) is possible only in particular cases. So, 

it is necessary a careful analysis of strength structure of ship and her skin. Taking into account only the local 

loading, the ship‟s strength structure is formed both by keelsons, girders and lines alongside and floors, frames 

and beams athwart wise forming a network on which the ship‟s skin is fixed. I consider the plate mesh, between 

the stiffening members, stressed by water pressure, being rigid with a small deflection (w   0.2h) where the 

sectional stresses Nx , Ny , Nxy  don‟t influence the bending. In this case, the equation system (1) under the form of 

(2) represents a linear differential equation with partial derivates and constant coefficients. 

To determine the stress and strain conditions in the plate mesh resulted from the local loading, means to find a 

function w which to check the differential equation (2) and in the same time the boundary conditions depending 

on the supporting pattern.  
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2. THE ANALYTICAL RESOLUTION OF DIFFERENTIAL EQUATIONS  

 

We consider the general case when the plate is of a x b x h, simply supported on the contour line, normally 

loaded with p(x,y)  varying on both directions. The system of axes is like in Figure 1. 
 

a
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b
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p(x)

 
 

Figure 1. Plate loaded with a load distributed on the surface varying on both directions. 

It is developed the normal load p(x,y) in double Fourier‟s series: 
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The parameters pmn  are determined by Euler‟s method  and become: 
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For the load uniformly distributed po the parameters pmn become: 
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The strain function (deflection) is also developed in Fourier‟s series under the form of: 
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The coefficients wmn are determined from the condition that the expression (6) to satisfy the differential equation 

of the plate (2) for any values x, y and the boundary conditions on the contour line (for the plate simply 

supported w = 0 and Mx = My = 0) and it is obtained: 
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The expression of deflection (6) for the particular case when the load p(x,y) = p0 , the case of bottom plates of the 

ship, becomes: 
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The expressions of sectional moments become: 
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The expressions of shearing forces become: 
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The maximum deflection is produced at the middle of the plate, that is, in the coordinate point x = a/2 and y = 

b/2, and in this case the relation becomes: 
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Figure 2. The rectangular orthotropic plate loaded with a normal load uniformly distributed: 

  a) The plate simply supported loaded with p(x,y) = p0 = ct. 

  b) The diagram of stresses in the rectangular plate simply supported. 
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The numerical results are listed in Table 1. The calculus was performed for the first three terms. 

3. EXPERIMENTAL RESULTS AND CONCLUSION  

 

To check the value of maximum deflection obtained by the theoretical methods mentioned above, we built a 

device by means of which we measured the maximum deflection in the middle of the plate. The device is formed 

of two rigid angle bar frames by means of which we performed the fixing and with only one frame we made the 

support on the sides. The loading was made with fine, dry sand with a density of   = 1.3 kg/dm
2 
. The thickness 

of sand layer was calculated from the condition of loading with a load uniformly distributed p = 3000N/m
2 
. The 

deflection was measured in the middle of the plate by a comparator. The comparation between the calculated 

values and the measured ones for the five plied laminar is shown in Table 1.  

We conclude that the methods of resolution can be divided into: 

- approximative analytical methods (energetically) : when the unknown function, w,  is approximated,  

from energetically reasons, satisfying both the system and the supporting conditions on the contour line. 

They are:  the orthogonally method, Ritz, Rayleigh-Ritz, Bubnov-Galerkin, Treftz, etc. 

- approximative numerical methods: the finite element method or the finite difference method. 

Both methods offer the possibility of determining the efforts and good results with acceptable approximations. 

 

Table 1. Experimental results. 
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Method of 

determination 

Maximum analyzed values 

wmax 

[mm] 

Mx 

[mm/mm] 

My[mm/

mm] 

Mxy 

[mm/mm] 
σx[mm/mm] 

Σy  

[mm/mm] 

The plate simply supported 

Experimental 4,2 43,601 11,91 -6,91 14,15 3,86 

Double 

trigonometric  
4,383 - - - - - 

Simple 

Trigonometric  
1,413 44,157 16,31 -5,44 - - 

Ritz method 4,18 44,8 13,2 -8,31 14,57 4,278 

MEF 

(COSMOS M 

program) 

4,424 - - - - - 

MEF (ALGOR 

program) 
4,205 - - - - - 

The fixed plate 

Experimental 1,19 - - - - - 

MEF 

(COSMOS 

M program) 

0,961 16 3,44 - 5,91 1,12 


