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Abstract: When designing vehicle suspensions, the dual objective is to minimize the vertical forces transmitted to the 

passengers (i.e., to minimize vertical car body acceleration) for passenger comfort, and to maximize the tire-to-road contact  

for handling and safety. While traditional passive suspensions can negotiate this tradeoff effectively, active suspension 

systems have the potential to improve both  ride quality and handling performance, with the important secondary benefits of 

better braking and cornering because of reduced weight transfer. This improvement, of course, is conditional upon the use of 

feedback to control the hydraulic actuators. In this paper we propose two methods for analyzing this tradeoff. First, we use 

frequency domain analysis of passive quarter- car suspension system and second we design a backstepping controller for 

analyze a parallel active suspension in witch the hydraulic actuator force is viewed as the control input.  

Keywords: active suspension, control, transfer functions, backstepping controller 

 

 

1. INTRODUCTION  
 

Development of control methods for passive and active suspension systems is a major topic of 

automotive industries. In general, ride comfort, road handling, and stability are the most important factors in 

evaluating suspension performance. Ride comfort is proportional to the absolute acceleration of the vehicle 

body, while road handling is linked to the relative displacement between vehicle body and the tires.  

On the other hand, stability of vehicles is related to the tire-ground contact. The main concern in suspension 

design and control is the fact that currently, achieving improvement in these three objectives poses a challenge 

because these objectives will likely conflict with each other in the vehicle operating domain [1], [4]. 

A good suspension system shall improve ride quality and passenger comfort simultaneously. For ride quality 

improvement vertical acceleration that caused by road profile shall be limited. This means that suspension 

system shall absorb road disturbances. In the other word, contact of tire with road surface shall decrease. In the 

other side, for increasing the controllability of vehicle, tire shall contact to road more. Therefore, reach to a 

suitable suspension system is difficult, Because a tradeoff between ride quality and vehicle controllability exists.  

In this paper we present two methods to analyze the tradeoff between ride quality and suspension travel of 

automotive suspensions: modal analysis to obtain approximate transfer functions and backstepping methodology 

to design control force generated by the actuator.  

  

 

2. DYNAMICAL MODEL OF THE SUSPENSION SYSTEM 
 

Since many of the proposed electronic suspension being considered today are independent, i.e. using local sensor 

information and control law, the completely active suspension system of a quarter car model, with two degrees 

of freedom,  show in Fig. 1, has been considered in this paper. We used the following notation: mus is the 

equivalent unsprung mass consisting of the wheel and its moving parts; ms  is the sprung mass, i.e., the part of 

the whole body mass and the load mass pertaining to only one wheel; kt is the elastic constant of the tire, whose 

damping characteristics have been neglected. 

If assume that the tire does not leave the ground the liniarized equations of the motions are 

 

uDxDKCM r 21  xxx   (1) 
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Figure 1:  Quarter car model 

 

Using this the state variables  

,xxx us 1  - suspension deflection (rattle space); 

,xx s2          - the vertical absolute velocity of the sprung mass ms; 

,xxx u 03    - tire deflection; 

uxx 4 ,          - the vertical absolute velocity of the unsprung mass mu; 

u(t)                  - the control force produced by the actuator; 

x0(t)                 - represents the disturbance, it coincides with the absolute vertical velocity of   

                           the point of contact of the tire with the road;  

we can rewrite (1) in state space as 

 

0xLBA   uxx  (3) 

where 
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3. PASSIVE SUSPENSION 
 

In the case of passive suspension the control force )t(u  is set to zero. Since the system obtained from (2) is 

linear, we can use frequency domain analysis. For judge the effectiveness of the suspension system we are 

looking at the location of system poles and zeros, and the response of the vehicle outputs to road disturbances. 

System zeros can be obtained by the transfer function for the control input to the outputs.  

The primary concern is acceleration transfer function: 

)s(d

)ksc(sk

)s(x

)s(x
)s(H ssts

A



0


 (5) 

where d(s) is characteristic polynom 

tststsssussusu kkskcs)kmk)mm((sc)mm(smm)s(d  234  (6) 
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Similarly, we define the following two transfer functions: rattle space transfer function (suspension deflections) 

[4]  

)s(d

smk

)s(x

)s(x)s(x
)s(H stus

RS 



0

 (7) 

 

and tire deflection transfer function 

 

   
 sd
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)s(H ssussusuru

TD
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23
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 (8) 

 

We are defined the transfer functions with respect to the road input velocity ( )s(x0 ), so all frequencies 

contribute equally to their mean square values. The system is observable for all three outputs and all states are 

controllable. This transfer functions will be used for comparison purposes later on. In this paper the numerical 

simulations were made for these values of parameters: 
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 (9) 

 

 

4. ANALYSIS OF PASSIVE SUSPENSION USING APPROXIMATE TRANSFER    

     FUNCTIONS  

 
Modal decoupling will be used to study the influence of different suspension parameters on the properties of the 

automotive suspension. 

In order to study the effects of specific suspension parameters on the suspension performance, we calculate the 

natural frequencies and mode shapes of the suspension system and then transform to a new set of coordinates in 

which the two equations of motion are approximately decoupled [4]. For the numerical parameters (9), the two 

approximate decoupled equations are: 

 sprung mass mode approximation 

 

00 xkxcxkxcxm ssssssss   , for  us xx   (10) 

 

 unsprung mass mode approximation 

 

0xkxkxcxm tutussu   , for tu xx  . (11) 

 

So, we obtain the following approximate transfer functions: 

 acceleration transfer function 
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 rattle space transfer function 
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 tire deflection transfer function  
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To evaluate the acuracy of the approximate transfer functions of equations (12) and (14), Figures 2 and 3 show a 

comparison between the original and approximate transfer functions.  
It is clear that the approximate transfer function (12) matches the original transfer function (6) well for frequency 

range 1   and the approximate transfer function (14) matches the original transfer function 

00 x/)xx()s(H uTD   well for the frequency range 250  .  

 

          Figure 2: Bode for )(sH A  sprung mass            Figure 3: Bode for )(sHTD  unsprung mass 

                       approximate mode                                           approximate mode 

 

In order to improve passenger comfort the transfer function )(sH A from the road disturbance to the car body 

acceleration should be small in the frequency range from 0–65 rad/s. At the same time it is necessary to ensure 

that the transfer function )s(H SR  from the road disturbance to the suspension deflection is small enough to 

ensure that even very rough road profiles do not cause the deflection limits to be reached. 

The fact that the actuator force u is applied between the two masses places fundamental limitations on the 

transfer functions )s(HA  and )s(H SR . As shown in [2], [4] and [5] the acceleration transfer function has a 

zero at the “tyrehop frequency,” ut mk1  .For the parameter values listed in (9), 7601 , rad/s. 

Similarly, the suspension deflection transfer function has a zero at the “rattle space frequency,” 

)mm(k sut 1 . For the parameter values listed in (9),  07242 ,  rad/s. The tradeoff between 

passenger comfort and suspension deflection is captured by the fact that is not possible to simultaneously keep 

both the above transfer functions small around the tyrehop frequency and in the low-frequency range.  

 

 

5. ANALYSIS OF ACTIVE SUSPENSION USING BACKSTEPPING METHOD  
 

Active suspension systems add actuators to the passive components. Active suspension systems have the 

potential to improve both ride quality and handling performance. This improvement is conditional upon the use 

of feedback to control the hydraulic actuators. In this paper we analyze the tradeoff between ride quality and 

suspension travel by backstepping design methodology [3].  

The first step in the design of a backstepping controller is the choice of a quantity to be regulated. The choice of 

this variable is crucial to the performance of the closed-loop system, and one of the goals of this paper will be to 

show how to exploit the design flexibility built into this choice in order to achieve the desired closed-loop 

behavior.  

If we want to minimize the car body acceleration (i.e. our objective control are the forces transmitted to 

passengers) then the desired value of actuator force is  

 

)xx(cxku ss 421   (15) 

 

to yield 02  sxx  . 
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Substituting this expression into (4) yields the closed-loop system 
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Now, if  we want to minimize the suspension travel, ,xx us  then the regulated variable becomes 1x .  

So, we obtain the zero dynamics of the closed-loop systems, which consist of an unstable subsystem 
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However, the zero dynamics are again oscillatory  and hence this design is still not acceptable. We must 

therefore choose the regulated variable so as to avoid the oscillatory zero dynamics. One such choice is the 

variable 

 

us x~xy 1  (18) 

 

where ux~  is a filtered version of the wheel displacement ux  

 

uu x
es

e
x~


  (19) 

 

This choice represents the first step towards the design, backstepping design of a controller which will 

accommodate the inherent tradeoff between ride quality and rattle space usage. The choice of the positive 

constant  e affects the properties of our active suspension [3].  

For small values of e, (19) is a low-pass filter. Hence, the regulated variable y1 is essentially equal to the car body 

displacement ux  as long as the road input contains only high-frequency components which are rejected; 

however, at very low frequencies (constant or slowly changing road elevations) and in steady state, y1 becomes 

almost identical to the suspension travel us xx  . Thus, as we will see later on, the sustained oscillations are 

eliminated, and the active suspension rejects only high-frequency road disturbances, namely the ones which 

generate large vertical accelerations and cause passenger discomfort. 

As the value of e becomes larger, more high-frequency components of the road input are allowed to pass through 

the filter (19). Hence, the regulated variable y1approximates the suspension travel us xx  : the high filter 

bandwidth renders uu xx~  . As a result, the active suspension becomes stiffer and reduces its rattlespace use, at 

the price of significantly reduced passenger comfort [3]. With this choice of variable y1, defined in (18) and 

using backstepping techniques we get a new control law for the calculation of transfer functions relating the road 

input 0x  to the car body displacement sx and wheel travel ux . 

So, for the closed-loop systems, we obtain the transfer functions 
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where 

 

eksks)mm(esm)s(d ttusu  23
1  (22) 

 

Furthermore we compare the transfer functions (5)-(8), of the passive suspension and the transfer functions (20)-

(21) of active suspension.  
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These transfer functions are plotted in Figs.4-6 for the numerical parameters given by relations (9). As shown in 

Figs. 4 -6, the frequency response plots for any real suspension must pass through certain invariant point. These 

invariant properties are a result of the fact that the suspension forces are applied only between a wheel and the 

car body, and they place insurmountable limitations to what can be achieved by active suspension designs. With 

small e(e=2), the active suspension design reduces both car body displacement and acceleration compared to the 

passive one,  Figs. 4 and 5, but increases the suspension travel as seen in Fig. 6. On the other hand, if e is 

increased to 9, then the suspension travel can be significantly reduced, as seen in Fig. 5, but then the car body 

displacement and acceleration are increased. 

 

       
 

                 Figure 4: Car body displacement                                 Figure 5: Car body acceleration   
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6. CONCLUSION 

 

Using the approximately decoupled models and backstepping method the following conclusions on suspension 

design were obtained: 

 Decreasing suspension stiffness improves ride quality and road holding. However, it increases rattle space 

requirements. 

 Increased suspension damping reduces resonant vibrations at the sprung mass frequency. However, it also 

results in increased high frequency harshness. 

 Increased tire stiffness provides better road holding but leads to harsher ride at frequencies above the 

unsprung mass frequency. 

 It was shown that considering ride quality and road holding trade-offs that both can be improved at low 

frequencies and at the sprung natural frequency.  

Nevertheless, it is also clear that with the appropriate choice of the filter bandwidth e our active suspension 

design is superior not only to the passive suspension but also to the ideal one in some frequency ranges. 
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