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Abstract: In his paper, a nonlinear system under external excitation of white noise was replaced by an equivalent 

nonhysteretiv nonlinear system subject to the same excitation for the probality density of the stationary response was known. 

The basic idea of the method is proposed to obtain the approximate power spectral density for the stationary response. In 

general, and especially in random vibration analysis, it is difficult to obtain a closed form solution for dynamic response of a 

nonlinear system.  
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1. INTRODUCTION  
 

A nonlinear system under external excitation of white noise was replaced by an equivalent nonhysteretic 

nonlinear system subject to the same excitation for the probality density of the stationary response was known. 

Nonlinear dynamic systems subject to random excitations are frequently met in engineering practice. Random 

differential equations appear in several different applications: study of random evolution of system with a spatial 

extension, study of stochastic models where the state variable is infinite dimensional, for example, a curve or 

surface. In this paper, a technique is proposed in order to evaluate the probality density function of the solution, 

based on the combination of the probalistic transformation methods. 

 

 

2. SYSTEM MODEL 
 

A nonlinear system will be considered with response ( )t  to an excitation  w t  described by second 

differential equation 

 2 5( ) 2 ( ) ( )t p t p t w t        ,        (1) 

where ( )t  is the displacement response of the system, c is the viscous damping coefficient, is the critical 

damping factor, for the linear system,  is the nonlinear factor to control the type and degree of nonlinearity in 

the system. 

The mechanical energy of the system is  

    2 5 2 6

0 0

( ) ,H h v dv p v dv p

 

               (2 

The potential energy of the system [1,2,3] is 

 
2.

2 61
,

2
mE p      .         (3) 

Obtain for the mechanical energy 
2.

2 62 2mE p    ,          (4) 
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 
 ,1 1 2

22

dud
H

dt d pH

 
 

  
           (5) 

We have 
.

1 2u u            (6) 

and equation of motion becomes 

 
.

2 2 12u pu u w t    .         (7) 

Obtain 
.

2 2 1 22 ( )u pu u w t     .         (8) 

These two first order differential equation are conveniently combined into the matrix format 

 
1 1

2 2

00

2

u ud

w tu updt



 

     
       

      
.        (9) 

and this format is similar to that of a linear oscillator 

The energy relation is written in the form 

2( ( )m

d
E H

dt


  ,          (10 

and the period for the system is 

( )mT E =

0

T

dt ,          (11) 

or 

max

min

( ) 2
2( ( ))

m

m

d
T E

E H










 .        (12) 

The integral vanishes in the lower limit and therefore differential with respect to the energylevel gives 

 
 

max

min

2 6
2

2
m

m

d
T E

E p







 



 ,        (13) 

The function   2 5h p    is odd function, ( ) ( )h h   , , and the point 0  is an equilibrium position, so 

(0) 0h  . We consider the initial conditions 
.

0, 0, 0t     . 

If the expression (12) we do min 0  , max A   is get the time to walk the distance MO and how the 

function ( )h    is symmetric, that this time period is a quarter. There was thus obtained between 

2 2 2
0 3 40

0 0 02 4

24
( )

3 1912

mA A A
m

m mm

E
T E

E EE

  
     ,      (14) 

relationship that writes 
2 3 2 4 2

0 0

2 4

24
( )

3 1912

m

m

m mm

A E AA
T E

E EE

  
           (15) 

Therefore, if the period nonlinear vibration depends on the initial conditions. 

If differentiating the polar representation [2,3] in the (4) and the (6) in relation to the time, we obtain the system 

of equations  
.

. .

1 sin 2 cos
2

m
m

m

E
u E

E
    ,        (16) 

.
. .

2 cos 2 sin
2

m
m

m

E
u E

E
    ,        (17) 

Obtain 
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.
. .

1 2sin cos
2

m

m

E
u u

E
   ,         (18) 

.

2 mE 
. .

1 2cos sinu u  ,         (19) 

or 
.

24 cos 2 ( )cosm m mE E p E w t   
       (20)

 

. 1
2 cos sin ( )sin

2 m

p w t
E

       

       (21)

 

The equations Fookker-Plank-Kolmogorov to determine the probability density [2,3] are 

1
( ( ))

2
j jk

j k

p
p p

t z z
 

  
  

  
.        (22) 

The differential equations (20) can be placed by the approximation to a set of diffusion equations [1,2,3] in the 

form: 

( ) ( , ) ( , ) ( ),j j k j k

d
Z t a Z t b Z t y t

dt
   2,1j        (23) 

where 

1 mZ E şi 
2 .Z            (24) 

For a broad-band excitation, we obtain Ito's equations [3,4] in the form  
~

( , ) ( , )j j k j kdZ Z t dt Z t dW   ,        (25) 

The Fokker-Planck-Kolmogorov equations associated with equations (25) are 

, , , , ,

, , , , ,

1 1
( ) ( )

2 2

1 1
( ) ( ) 0.

2 2

m m m m m m m

m m m m m

E E E E E E E

m

E E E E E

m

p p p
E E

p p p
E

   

     

  


  
 

   
    

   

   
     
   

     (26) 

 

 

3. THE PROBALITY DENSITY FUNCTION 
 

The probality density function of simultaneous values of the response of a system of the form (1) to ideal white 

noise excitation satisfies a two dimensional Fokker-Planck-Kolmogorov equations, partial differential equation 

0
0

( )

0

( )
( )

Em eq

m

f r dr

Sm
E m

CT E
p E e

S










,         (27) 

where 

  0

2

2

T

eq m T

o

pdt

f E

dt









 

.          (28) 

Introducting equation (27) into (26), obtain the probability density of response is 

 
  20

0

2 3

4

0

m m

m

E E
m S

E m

CT E
p E e

S








 
  

  ,        (29) 

where C is the constant of normalization. 

The probability density of response becomes 
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 
20

0

2 3 2 4 2
0 0

2 32 4

4

0

24

3 1912 m m

m

m

E E
m mm S

E m

A E AA
C

E EE
p E e

S






  



 
  

 

 
  

 
 

 .    (30) 

 

 

4. THE POWER SPECTRAL DENSITY OF THE RESPONSE FOR THE SYSTEM 
 

The operator ( )ms E is determined [3,4,] by the expression 

( )ms E =

2.

t

m

x

E

 


0

1 1
( )

( )

mE

m m

T r dr
T E E  ,       (31) 

in which, if the period taken to introduce the expression (11) 
2 2 2 4 2

0 0

3

2 3 2 4 2
0 0

2 4

2 2
4 2

3 5731
( )

2
2 2

3 191

m

m

mm

m E

m m

m

m m

A A
A E

EE
s E s

E A E A
A E

E E

  

  

 

 

 

.     (32) 

The power spectral density of response [4,5,6] is  
2

2 20
2 2 2 2 2

2

1
( ) ( )

( )
4

m m

m

m m

m m

E E m

E m m

E E

E E

s f E
S p E dE

s f
s f

 


 






 

 ,     (33) 

or 

  20

0

2 32

4

2 20
02 2 2 2 2

2

1
( )

( )
4

m m
m m

m m

m m

E E
E E m m S

m

E E

E E

s f E T EC
S e dE

Ss f
s f





 

 
 



 
   

 

 

 .    (34) 

For the linear case we have 

( )ms E =

2.

t

m

x

E

 


0 0

1 1 2
( ) 1

( ) 2

m mE E

m m m

p
T r dr dr

T E E E p




   .     (35) 

Because nonlinearity factor is 1 , 

  2eq mf E p           (36) 

and the probability density of response is 

  0

2

0

2 m

m

p
E

S
E m

C
p E e

pS






 .         (37) 

Introducing all these parameters in response spectral density expression given by (33.), we get 

0

2 2 2 2 2
( )

( ) (2 )

S
S

p p
 

  


 
,        (38) 

that formula known in the linear case. 

 

 

5. NUMERICAL RESULTS 

 

In this example, 1m kg , 36
N

k
m

 4
Ns

c
m

 , 
23m  . 

Obtain: 

16 ,
k

p s
m

  2 0,33
c

p
m

    .        (39) 
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Figure 1. The power spectral density of the response ( )S   for 20,33, 3 .m     

 

 

6. CONCLUSION 

 

In this article, we are analyzing a differential equation with random variable.Our new technique based on the 

combination of the transformation method with numerical method to evaluate the probability density function 

and the power spectral density of the response of the systems. The avantage of the method is that it yelds the 

approximate probality density for the stationary response of nonlinear stochastic systems rather than just a few 

statistical moments and that is may be applicable to nonlinear stochastic systems. 
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