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STEADY PRECESSION OF A ROLLING DISK OR RING

G.Deliu, D.Botezatu
Transilvania University, Braşov, ROMANIA, deliumec70@gmail.com
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Abstract): The paper presents the deduction of motion equations for any circular body moving in a turn, with application to
the particular case of a monocycle vehicle. In this sens, the authors start from the simplest case of steady turning rolling disk.
Inspite of the impression of over simplified model, the results of this paper may be largely applied to the study of the motion
of an actual monocicle vehicle[1]. The most important conclusion is that such a vehicle is more stable in the turn than some
might think.
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1. INTRODUCTION

The present paper deals with the equations describing a particular case of motion, namely the steady precession
of a free rolling body. By steady precession [2], we mean a rotation about a fixed point, having the following
particularities: the nutation angle θ = ct., the magnitude of the precession angular velocity 1 = ct., the

magnitude of the spin angular velocity 0 = ct.(Fig.1).
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Figure 1. Steady Precession of a Disk

2. REFERENCE FRAMES AND NOTATIONS

To describe the motion of the circular body (disk or ring), we  have to use three reference frames (Fig.1):

R1 - the space frame O1 x1 y1 z1, fixed to the ground, and having the O1 z1 – axis vertical upward;

R - the body frame C x y z, bound to the moving body,  having the origin C in the centre of mass of the body and
the C z – axis passing by the fixed point O1 ;

R’ – the reflected frame O’x’y’z’ , parallel to the body frame R, but having the origin O’ over to O1 .

Notations:

I – contact point between disk and ground; IRA – instantaneous rotation axis; φ - own rotation angle (spin
angle); ψ - precession angle; θ - nutation angle; 


- instantaneous (resultant) angular velocity vector; 0



- spin velocity vector; 1


- precession velocity vector; 


- angular acceleration vector; n - unit vector of
the line of nodes.

3. KINEMATIC RELATIONS

3.1. Velocities

As it is well known, a motion about a fixed point may be interpreted as a rolling without slippage of two surfaces
one over another – the loci of the instantaneous axis of rotation- that is the Poinssot’s cones: the body cone rolls
on the space cone (Fig.2).

Figure 2. Poinssot’s cones

This rotation has the angular velocity (Fig.3)

01 ωωω

 . (1)

The velocity of the point C may be written now as
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  hhhV 110C

  . (2)

Figure 3. View along the line of nodes

In order to simplify the expressions of the implied vectors, here is useful to introduce another reference frame,
namely the frame of three-orthogonal unit vectors ken

 ,, - frame denoted by R” (Fig.2 and Fig.3).
In this frame, the velocity of the centre of mass C will have a simpler expression:

  "RCV


= nsinh 1

 , (3)

or, in terms of body frame R components:

 

















0
sin
cos

sinhV 1RC 





. (3’)

Now, we can see (Figure 3), the relations between the magnitudes of angular velocities:
 cos01  , (4)

 sin0 . (5)

3.2. Accelerations

a) Angular acceleration

From relations above, we can observe that the magnitude of the angular velocity 


is constant. But, because it
direction is variable in time, results that the time derivative of the vector 


will be

011 
  . (6)

Then, we shall obtain:
  ,nsinkk 01011


  (7)

meaning a vector parallel to the line of nodes and having the magnitude  sin01 
 .

b) Linear acceleration of centre of mass

The acceleration of the centre of mass C can be written starting from the fact that the center of mass
has a circular path of radius sinhRC  , and that its speed is constant in time. Then, we get

C1C Va

 , (8)

or, in terms of the R” frame components:
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Finally, the magnitude of the acceleration of the centre of mass will be simply
 sinha 2

1C 
 . (10)

4. DYNAMICS OF THE STEADY PRECESSION OF A DISK

4.1. Momentum and Angular Momentum about the Centre of Mass

Figure 4. Dynamics of a Steady Precession of a Disk

In order to find the differential equations of motion, we have to write first the expressions of :
a) Resultant Momentum,

CVmp

 , or according to equation (3),

nsinhmp 1

  . (11)

b) Angular Momentum about C :
     RRCRC ĴK 


 , (12)

where the inertia tensor about C in the frame R is
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Then, we shall have
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4.2. Time Derivatives

In order to apply the theorem of momentum variation, now we must take the time derivatives of the
momentum, and respectively of the angular momentum. These will be:

a)  C1C Vmamp
   . (15)

In accordance to equation (9) and Figure 4, we shall obtain in the frame R the vector
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Now, the relation (18) becomes
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Here, the inertia tensor for a disk has the expression  
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Then, relation (20) takes the form
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Now, returning to the equation (17), the last term in the right member can be written as
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Finally, introducing (20) and (23) in (17), we get:
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4.3. External Forces

As we can see from Fig.4, on the disk are acting the following external forces: the weight G=mg, the
vertical component of the reaction of the ground VF and the horizontal component of the reaction of
the ground HF .
Note. Rolling resistance is assumed to be negligible in this stage of the study, as well as the tangential
to the disk component of the ground reaction.

4.4. Motion Equations
According to the Theorem of Momentum Variation, we can write:

 iFp , that is HVC FFGam
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 . (25)

Now, as the acceleration of the centre of mass has no component on the vertical axis, we have the obvious
relation
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which gives further
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Now, in terms of the angular momentum variation, we can write: CC MK
  , that is to say

 
 



































0
M
M

0
JJJ
JJJ

y

x

xzxzyy

zyzyxx




, (28)



226

where:
   coscosgsinamriMM cCx 


, (29)

   sincosgsinamrjMM cCy 


. (30)
Now, introducing in (30) the relations (3’) and (19), we get:

    cosMJJcoscossincossinJ Cyz10110x  , (31)

    sinMJJcossinsinsinsinJ Cxz10110y  . (32)

The most important result of these relations is: the resultant moment of the external forces is constant in
magnitude and is pointing along a parallel to the line of nodes. As we can easily see after some simple calculi,
the magnitude of this moment is for a rolling disk:

 cossin
4

mrcossinJM 2
1

2
2
1xC  . (33)

On the other hand, from the relations (29) and (30), we can write the same moment as

  cosgsinamrM CC  . (34)

Equalizing these values, in accordance with the angular momentum variation theorem, we get the
equilibrium relationship equation between the precession speed 1 and the nutation angle θ :

2
1

2

r
g1tg


  . (35)

3. CONCLUSION
1. Under the conditions of steady precession motion, the lateral inclination of the rolling body (disk or ring) will
be constant thanks to inertial (gyroscopic) properties of the motion.

2. The above result is valid also for a monocycle in steady turning, under good adherence conditions, and with
accurate keeping of the centre of mass in the symmetry plane of the vehicle,after the turn was started.
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