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Abstract: This paper presents an iterative strategy for redundancy resolution with obstacle avoidance. The need for dexterous and versatile robotic manipulations had led to the development of kinematic arms. Redundancy of a serial manipulator means that more joints than necessary are available in order to achieve a specified task of the manipulator end-effector. Manipulators are thus allowed to achieve complex tasks by taking into account additional constraints. In redundancy resolution, obstacle avoidance is considered as a performance criterion and, in this paper, is performed using specific solution offered by Extended Jacobian Method, while the end-effector follows a pre-determined path in workspace. Simulation results for a planar redundant manipulator avoiding a restricted surface are also presented.
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1. INTRODUCTION 

The need for dexterous and versatile robotic manipulations has led to the development of kinematic redundant arms. A robotic manipulator is called kinematically redundant if it possesses more degrees of freedom (DOF) than is necessary for performing a specified task at the end-effector. The number of DOF is determined on the kinematic structure of the manipulator and usually coincides with the number of independent actuators (i.e. joints). For example, a planar manipulator with three revolute joints has one degree of redundancy for performing self-motion of the robot body in two-dimensional space (2D), while the position of the end-effector is not affected. Same planar manipulator is non-redundant for tasks involving both position and orientation of the end-effector. In the three-dimensional space (3D), a non-redundant manipulator must have six DOF for end-effector position and orientation in any desired configuration. Thus, a spatial manipulator is redundant if it possesses at least seven DOF. 

Because an infinite number of system configurations correspond to the same end-effector configuration (position and orientation), the user can choose the better configuration improving the robot dexterity while end-effector accomplishes the desired task. This phenomenon is illustrated by self-motion in which the joints can move while the end-effector remains stationary. From mathematical point of view, there exists a null space, which is a set of all possible configurations that realize the same end-effector configuration, in the joint space.  

Redundancy allows manipulators to achieve complex tasks by taking into account additional constraints. These constraints limit, globally or specifically, the manipulator configuration using adjustable parameters whose values are determined by computer simulations. The choice of the additional constraint is done according to some performance criteria such as: obstacle avoidance, maneuverability improvement, limiting of speed/force values or minimization of joint torques, a.s.o.

The direct geometric model gives the relation between the end-effector configuration vector x and the joint coordinates (angles vector (, for rotation joint case):
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(1)
where n is the number of degrees of freedom and m is the workspace dimension.

The direct differential model is obtained by differentiating the direct geometric model:
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where 
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 is the manipulator Jacobian matrix.

For non-redundant manipulator structures (n = m) the inverse differential model is:
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For redundant manipulation (n > m), inverse kinematic problem is more complicated by the infinite number of possible solutions and its extension is known as the Redundancy Resolution Problem and can be solved by a Redundancy Resolution Method. Extended Jacobian Method is one of the basic methods that can be distinguished in the redundancy literature. Obstacle avoidance is one of the most important domains of redundancy application due to incapacity of non-redundant structures to avoid collisions with workspace obstacles. An obstacle avoidance strategy based on the Extended Jacobian Method is presented in this paper and the simulation results, obtained for a planar redundant manipulator avoiding a restricted surface, are also illustrated.

2. THEORETICAL BACKGROUND
The Configuration Control method, introduced by Seraji [1], augments the manipulator forward kinematics with a set of kinematic functions in Cartesian or joint space that reflects the desired additional task. Let 
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 be the forward kinematic model of the robot, mapping the 
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 end-effector coordinate vector xE. Let 
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 define a set of n–m kinematic functions. The augmented kinematic model is given by:
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(4)
where x is the 
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 configuration vector. The user can then set up the desired additional task by imposing the constraint 
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 is the user specified desired time variation of xc. The configuration control problem must ensure that the configuration vector x tracks the desired trajectory 
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 using a kinematic or dynamic control law.

The direct differential model obtained from the direct geometric model presented in equation (4) is: 
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(5)
where JE is the end-effector Jacobian matrix, Jc is the additional constraints Jacobian matrix and J is the extended Jacobian matrix.

If the desired additional task is to optimize an objective function, then the previous method is called the Extended Jacobian Method, introduced by Baillieul [2]. One defines 
[image: image16.wmf](

)

T

c

g

f

¶

q=

¶q

N

, where g(θ) is the scalar kinematic objective function to be optimized and N is the 
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null space matrix of J that corresponds to the self-motion of the redundant manipulator:
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Ja is a m-squared matrix of the first columns of J and Jb is a 
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matrix of the remaining columns.

The necessary optimality condition of g(θ) is fc = 0. Thus, if the desired trajectory is defined as 
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 and the configuration control is used to track 
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, then the kinematic optimization problem can be solved.

The Transpose Jacobian Matrix method provides a solution of the inverse kinematic problem (redundancy problem) [3], [4]:
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where K is a positive definite matrix used to vary the additional constraints effect on the constraints imposed to the end-effector and ε is the error, 
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3. THE PROPOSED STRATEGY
Because an appropriate matrix K is difficult to be chosen in order to obtain 
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 is the desired error, another method for inverse kinematic problem resolution is proposed in this paper. The proposed method consists in matrix K elimination followed by Transpose Jacobian application, applied iteratively until 
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[9]. For a sampling step of end-effector task, this iterative algorithm is:
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(8)
For obstacle avoidance we choose for the mathematical expression of the kinematic objective function, g(θ), the sum of the inverses of the distances between the obstacle and the Control Configuration Points (CCP) placed on the manipulator elements. 
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(9)
where dij is the distance between CCP i and obstacle j.

The primary task of the manipulator belongs to the end-effector and consists in a pre-determined spatial curve following, while obstacle avoidance represents the secondary task. The end-effector position and orientation is described, at every sampling step, by a coordinate vector in Cartesian space obtained from the direct geometric model given by equation (1) and by a vector imposed by the pre-determined curve that must be followed by the end-effector during the motion. The error, consisting in the error of the end-effector configuration (difference between the two vectors described above) added to the error of secondary task, is described in equation (8).

The strategy of the proposed redundancy resolution using Extended Jacobian Method is illustrated in figure 1.
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Figure 1: Diagram block of the proposed method

4. SIMULATION RESULTS
The purpose of the following application is to generate the references (positions and orientations) along the contour of a circle with radius r, whose surface, S, is considered to be restrictive for all elements of a SCARA like planar redundant manipulator with revolute joints (Figure 2), having n=4degrees of freedom in 2D Cartesian space (m = 2) [5], [6]. 

The initial position of the manipulator is given by:
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(10)
where (0 is the vector of initial joint coordinates, l0, l1, l2, l3, l4 and l5 are the lengths of the links, R is the radius of end-effector positions generation, r is the radius of the restriction circle and α0 is the initial angular position (at moment t = 0).
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Figure 2: Initial manipulator position

The restriction surface is a circle with imposed values for both radius r and its centre coordinates 
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. The end-effector is the link l5 and the coordinates of its extremities (ME and MR points) are generated according to the following relations:
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(11)
where (( is the angular step of generation, k is the sampling step of generation, 
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The objective function is the sum of the inverses of the distances between the 3-rd and 4-th joint of the manipulator and the restriction surface. This is a particular choice of the CCP, the number and the placement of these points being a subjective process. 

The interpretation of the computer simulation results takes into account the following qualitative aspects:

· the manipulator links should not intersect the restriction surface for a complete 3600 tracking of its contour;

· the joint coordinates should have small variations;
· for this case study, the direction of contour tracking is imposed by the chosen initial position.
To achieve these qualitative requirements, the computer simulation was performed for various values of the input error value. The simulations were realized using MATLAB program and the results are illustrated in Figure 3. 
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Figure 3: Kinematic behaviour of the redundant manipulator avoiding the restricted surface

5. CONCLUSIONS
An avoiding obstacles strategy of redundant manipulators using the Extended Jacobian Method was proposed in this paper. The Extended Jacobian Method has two important advantages in comparison with another methods for redundancy resolution. First, the fact of dealing with a square Jacobian matrix; thus, the use of a generalized inverse such as Moore-Penrose pseudoinverse (for Gradient Projection Method [5]) is eliminated. Second advantage consists in the possibility of choosing a desired error value (which can guarantee improved end-effector task accuracy while obstacle avoidance is certainly accomplished). A comparison between Extended Jacobian and Gradient Projection in obstacle avoidance case is offered in [7]. The usual disadvantages of the method consist in difficulties when choosing the constraint expressions (the used criteria, having complicated expressions in symbolic forms, must be differentiable) and in algorithmic singularities introduced by these additional constraints. These two disadvantages are eliminated by advanced redundancy resolution approaches, such as direct search techniques, neural networks or genetic algorithms. However, these methods require expensive computational resources and cannot deal with real-time applications.

The computational algorithm of the proposed strategy is a subjective process and needs simulations in order to obtain a proper determination of the number and placements of the Configuration Control Points.
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