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Abstract:  Compliant mechanisms are widely used in precision mechanism and microsystem design. A commonly used compliant mechanism configuration makes use of leaf spring of rectangular cross section loaded in bending. The section is characterized by a high width to thickness ratio. This design solution is employed in a great variety of precision instruments and microdevices, i.e. accelerometers, RF MEMs and usually an accurate evaluation of the flexural stiffness is required. The bending of such leaf springs is a not well developed topic, in the classical engineering literature, two models being available in literature: beam model, referring to the case when the anticlastic curvature is free to occur, and cylindrical flexure of thin plates, when the anticlastic curvature is precluded. The aim of this work is to develop a solution based on the von Kármán non linear theory of thin plates in order to analyze intermediate cases between anticlastic and cylindrical bending, depending on width to thickness ratio of the leaf spring cross-section.
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1. INTRODUCTION 
Compliant micromechanisms are widely used in microsystem design [1]. This approach is particularly useful when a microfabrication process based on lithography is used [2], as microassembly problems are avoided; moreover a compliant microstructure is free from backlash, friction and wear. A commonly used compliant mechanism configuration makes use of leaf spring of rectangular cross section loaded in flexure. This design solution is employed in a great variety of microdevices, i.e. accelerometers, RF MEMs (micro-transmitters, micro-switches,  capacitive micro-actuators) [3]. In the most common cases, as the first natural frequency or the pull-in voltage has to be determined [2], an accurate evaluation of the flexural stiffness is required.

In literature, depending on the kind of application and microfabrication process used, solutions based on leaf springs with different shapes are available. In the usual case of microstructures obtained by using surface microfabrication processes,  micro-springs with a section characterized by a high width to thickness ratio are employed, if an out of  plane deflection has to be pursued (i.e. see [3]). On the contrary, if an in-plane deflection is required  (i.e. see: [4]), cross sections with width to thickness ratio even lower than one are used.    

Recently some authors [5,6] have raised the problem of evaluating the micro-spring  flexural stiffness for different shapes of the cross-section. This is a not well developed  topic in the classical engineering literature. In fact two models are available in literature: beam model, referring to the case when the anticlastic curvature is free to occur, and cylindrical flexure of thin plates, when the anticlastic curvature is precluded. A clear statement defining the field of applicability of the two theories  is not available; moreover it could be necessary to handle also intermediate cases when the anticlastic curvature is only partially prevented to occur.

In [7] a physical interpretation of the phenomenon is suggested. Starting from this approach, in [8] the author proposed to consider transverse strips of the plate as beams on elastic foundation; a characteristic parameter is introduced, taking into account the spring width, thickness and curvature. Flexural stiffness versus the above parameter is plotted for different values of . Similar results, not supported by an analytical treatise, are proposed in [9] for the case of material with  = 0.33; the validity of the approach is also stated in [10]. More recently different approaches have been proposed: in [11] width to length ratio is proposed as characteristic parameter to evaluate the spring flexural stiffness; when this ratio is higher than 3, beam flexural stiffness has to be corrected. Finally in [1] an x-ray diffractive measurement is performed to validate the theory proposed in [8]; nevertheless it refers only to one width to length ratio under two different loading conditions.

The aim of this work is therefore to develop a solution based on the non linear theory of thin plates.  In particular, for engineering design purpose, a characteristic parameter, that takes into account either geometrical and material properties, is presented.

2. ANALYTICAL MODEL

The rectangular plate shown in Fig. 1 is considered. Lengths of the edges parallel to the x and y axes are l and b respectively. The plate is not constrained and the edges parallel to the y axis are loaded by  two distributed  bending couples c  whose resultant is Mx=C. 
	[image: image43.wmf][image: image2]


	Figura 1: Geometry and loads


The following assumptions are made: plate thickness h, deflections and strains are small, Kirchhoff hypothesis holds and the material is linearly elastic. It follows that the problem is linear and the deflection of plate middle plane can be determined as a solution of the well-known Sophie-Germain’s equation: 
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where  
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. The solution of  Eq. (1) for the case shown in Fig. 1 is the following [13]:

	
[image: image5.wmf](

)

2

2

2

2

1

y

R

x

R

y

,

x

w

n

-

=


	(2)


where: 
[image: image6.wmf]3

12

1

Eh

C

R

=

. The deflection surface of the plate middle plane shows two constant curvatures x e y in the (x,z) and (y,z) planes respectively. The first term refers to the curvature in the principal bending plane, while y, the curvature in the transverse plane, is usually called anticlastic curvature and it has opposite sign with respect to x. The twist xy vanishes everywhere: 
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It is therefore possible to state that, in this particular load case, the bending behaviour of the plate equals the bending behaviour of a beam, in the sense that the deflection of the line y = 0 of the plate coincides with the centerline deflection of a beam subjected to two bending couples C at its ends. Thus the bending stiffness of the two structures is globally the same. On the contrary, if the rectangular plate is bent to a cylindrical surface, i.e. the anticlastic curvature y vanishes while the longitudinal one x is equal to 1/R, it follows [14]: 
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In [14] the author emphasizes that, if the ratio b/h is great enough, bending is almost cylindrical and Eq. (4) can be used. The ratio between the applied couple C and curvature is usually called flexural rigidity; from equation (4) it follows that equals D, thus increased by a factor 
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 with respect to the case described by equation (2). 

If in the definition of the strain components in the middle plane of the plate, the second order terms are taken into account, the following expressions are obtained: 
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In this case, the mechanical behaviour of the plate is  described by means of the following equations [13]:
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The first and the second equation concern the equilibrium of an elementary element in the x-y plane, as body forces are not considered. The third equation describes the kinematical compatibility condition written in terms of stress; the last equation results from equilibrium in z direction. These last two equations are usually called Von Kármán’s equations. In the system of differential equations (6) the unknown functions are the membrane stresses x, y, xy and the transverse displacement w. It is well known that in the non linear case the flexural and the membrane behaviour are coupled: membrane stresses may influence flexural stiffness (geometric stiffness), whereas transverse loads may induce membrane stresses. Considering only the pure bending, after some simplifications (including the fact that 
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where 
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 (figure 2). 
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Figura 2: Coordinates  w0 and w definition
Eliminating the stress x, equation (7) leads to:
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The solution of this equation permits the shape of each cross section centerline to be determined. It must be noticed that in Ashwell [8] the same equation was obtained by considering the plate cross section as a beam subjected to forces originated by the radial components of membrane stresses. It is interesting to observe that Eq. (8) is formally analogous to the case of a beam on elastic foundation. By denoting
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and imposing the boundary conditions (
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) the deformed shape of the plate cross section can be finally expressed as: 
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To evaluate the resultant moment C to be applied (see figure 1), it is necessary to compute the integral: 
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where 
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 gives a nonlinear contribution to the total bending moment. Performing the calculations, the following expression can be obtained: 
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where: 
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Functions F(b) and f(b)are defined as follows: 
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and
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Parameter  given by equation (12), characterizes the modification of the spring leaf stiffness with respect to the beam theory that consider that the anticlastic bending is free. Obviously the parameter is larger than the unit and this means that stiffness is larger than the value provided by the beam theory.
3. RESULTS AND DISCUSSION
Eq. (11) provides an useful tool to characterize the flexural stiffness of flat springs. The term EI (flexural stiffness in classical beam theory) is corrected by means of the function , which depends on cross section geometry (width b and thickness h), on material properties (Poisson coefficient) and on the curvature produced by the load (1/R).  Function varies from the unity (beam flexural stiffness) and the value 
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 (flexural stiffness of the plate in cylindrical bending). The following function  can finally be introduced: 
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It can be noticed that  measures the difference between Kfl  (actual flexural stiffness) and Kflp (stiffness of the plate in cylindrical bending) with respect to the maximum difference Kflb - Kflp , whose expression is:
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where Kflb is the beam flexural stiffness. It is interesting to observe that  is related only to dimensionless parameter b:
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that is the characteristic parameter of the problem. In Fig. 3 it is shown the plot of  versus b. In particular  equals the unity for b=0; for increasing values of b it decreases continuously, vanishing asymptotically. In the same figure, some sketches of the deformed shapes of the cross sections are reported. It can be noticed that for small values of b (b <2), the lamina exhibits a “beam” behaviour and an almost complete anticlastic curvature takes place. For high values of b (b >10), the anticlastic curvature is nearly neutralized (except for some distortions at the edges of the cross section) and the lamina behaves as a plate in cylindrical bending. For intermediate values of b, the anticlastic curvature partially occurs and the corresponding flexural stiffness can be easily computed by means of Eq. (16). 

From a physical point of view, this behaviour is explained in [7] taking into account the geometrical non linearity of the problem. Considering a small length of longitudinal fiber subjected to a tensile stress and with a curvature R about the axis of principal bending, this experiences a resultant force towards its centre of curvature (in opposite direction, if the fibre is compressed). These forces tend to attract all the parts of the cross section (the deformed shape has to be considered) towards the neutral axis. The effect is much stronger if b is high. In particular, if 
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, the structure is, with respect to the x direction, in a plane strain state (edges excluded). Vice versa, when 
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 the anticlastic curvature freely occurs and a plane stress state can be observed. It is interesting to notice that different values for b (or equivalently for , can be obtained not only varying the cross section geometry (b2/h), but also varying the load condition (1/R) or the material Poisson coefficient . Considering a fixed loading condition and a given material, the well known assessment that, as ratio b/h grows, the structure tends to behave as a plate in cylindrical bending, is confirmed.
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	Figure 3: Flexural behaviour for different values of  b


It is much more interesting to consider the case in which the shape of the cross section and the material are defined, while the quantity 1/R, i.e. the applied bending moment, can be varied. When the applied load is small, the structure behaves as a beam; conversely, when the applied load, i.e. the parameter 1/R, is  high, the structure behaves as a plate in cylindrical bending. It must be noticed that for high values of 1/R the elastic limit of the material can be exceeded; in that case the presented model does not hold any more. 
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Figura 4: Values of   versus the maximum elastic deformation h/R for different b/h
From the design point of view, it can thus be useful to present the previous results in a different way. To this aim, plots of the function  (Eq. 25) versus h/R, for = 0.3 and for different values of the ratio b/h, are reported in Fig. 4. The parameter h/R is proportional to the lamina maximum deformation max= h/2R.  It follows that Fig. 4 makes it possible to verify, for a chosen geometry (b/h), which is the maximum flexural stiffness achievable without exceeding the elastic limit. Similar diagrams can be easily obtained for different values of . 
In function of the above mentioned factors, the stiffness of the leaf spring can vary by several percent (about 9% for a maximum strain of 0.1% and for =0.3, see figure 4): for precision mechanism and microsystem design this difference cannot be neglected and therefore an accurate method to asses the leaf spring stiffness is necessary.
3. CONCLUSION
To evaluate the flexural stiffness of a leaf spring with rectangular cross section, a non linear model based on the flat plates theory is presented. A dimensionless parameter b is introduced, which depends on  the shape of the cross section, on the mechanical properties of the material and on the load value. When b is greater than 10, the structure behaves as a plate in cylindrical bending. When b is lower than 2, the flexural stiffness tends to that obtained by the classical beam theory. For intermediate b, the stiffness ranges continuously between the two previously mentioned values and it can be easily determined by means of the proposed theory.
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