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Mircea LUPU1,Olivia FLOREA2
Transilvania of Brasov  Department of Mathematics

Abstract. The dynamic systems study in this paper  is from the category of the parametric oscillatory system .This cases appear when in the dynamic systems  interfere modification in time  of mechanical parameter (constitutive or geometrical) ;the variation of the elastic rigidity , the density variation , the variation of moment of inertia by  modification of the centre of weight , of the   length  of the pendulum , of position and shape of same masses. This systems have a great   practical   utility  in the case of  cranes  ,elevators  or transporter  on vibration  base ,mechanisms with  wells  gears, the robotic of control and measurement devices. The study of these systems is made in a way of stability and control for optimizing and for evading catastrophe.  In this paper is made a study of a dynamic nonlinear  systems in a case of two  oscillating masses  tie nonstationary so: it is thought that a oscillator about m (mass) ,  (in general  on a inclined plane ) which from is suspend it a pendulum m and   length l(t) of a wire (crane) ,   LaGrange  equation leading to  nonlinear systems which are solve  by  successive approximate  or by equation of   Mathieu tip  for which is study  stability with Aince-Strutt diagrams. 

1. THE STUDY OF A NONLINEAR DYNAMIC SYSTEM OF TWO NONSTATIONARY BOUND BODIES WITH PERMANENT OSCILLATIONS
Given a dynamic system which consists in a M mass oscillator operated by an elastic resort POA on an incline plane (
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 is the static position) and a mass m pendulum suspended in A trough the AB=l (A(M), B(m)) wire. The wire is operated by affixed pulley N and passes trough NAB; the pulley mobility can give various variations of the wire length AB=l(t) (linear
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acts on m; with  k the elastic constant. The coordinates of A, B are 
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Where 
[image: image11.wmf]a

 is the angle of the inclined plane POA with the horizontal and 
[image: image12.wmf]q

 is the angle between the AB wire and the vertical.
The kinetic energy of the system is: 
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 and the potential energy a U for the 
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If l=ct the system becomes stationay S and if l=l(t) the system becomes nonstationary N; for 
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 the oscillator is horizontal of vertical.
The Lagrange equations 
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 with L=T-U become in th e described two situations:
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In the paper we’ll study the two situations (3), (4) only in the case of the vertical oscillator M with 
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The system (3) becomes:
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We’ll make the notations:
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Where: 
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We normalize the system:
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The stability study is made around the equilibrium solutions 
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The problem od stability for the solution 
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With the period 
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By introducing these solutions into the equation and transforming the products in sums we have trigonometric identifications that lead to the system homogeneous in 
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	Fig.1. Strutt Digrams


For 
[image: image52.wmf]0

³

e

above the graphics 
[image: image53.wmf])

(

d

e

e

=

we have instability and between 
[image: image54.wmf]0

=

e

and the graphics we have stability. The instability is called parametrical resonance, when 
[image: image55.wmf]e

grows above the diagonals. In the inferior half-plane 
[image: image56.wmf]0

<

e

we have symmetry. So, by taking 
[image: image57.wmf]K

,

3

,

2

,

1

,

4

2

2

=

=

=

k

k

l

g

w

d

and 
[image: image58.wmf]l

g

n

l

g

l

g

2

,

,

,

2

1

2

1

=

=

=

w

w

w

K

. We have parametric resonance around these frequencies
[image: image59.wmf]n

w

. Therefore, the pendulum around 
[image: image60.wmf]0

=

q

can be perturbated in the vertical plane; the usual pendulum resonance is in the vicinity of
[image: image61.wmf]l

g

=

w

and in composition with the oscillator, parametrical resonances appear in the vicinity of 
[image: image62.wmf]n

w

. For
[image: image63.wmf]e

with small values, 
[image: image64.wmf]l

x

0

=

e

, we have instability for 
[image: image65.wmf]2

D

 with 
[image: image66.wmf]d

e

<

-

2

4

1

 and 
[image: image67.wmf]2

4

1

e

d

+

<

(initil positions choosen on the vertical), if:
	
[image: image68.wmf]2

2

or 

 

2

2

2

0

2

0

l

g

x

g

l

x

-

>

-

>

w

w


	(12)


If besides the oscillator, an damper is mount, the equation becomes:
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In this case the asymptotic stability from
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is obtained, which is of Mathieu type, if we take
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Following the small parameter 
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Identifying based on the powers of 
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Considering the solution (17) we obtain for 
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The solution 
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For the case of M with the speed
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CONCLUSION
1. During the pendulum wire’s shortening l(t), there is the solution that for an oscillation of M (the oscillator) in a period T, the m pendulum can make k oscillations.

2. At a lengthening of the wire l(t), there is a possibility that for each oscillation of the m pendulum, the oscillator M can perform n vertical oscillations.

3. For short periods in which E<0 auto-oscillation phenomenon may appear.
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