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BOUNDARY INTEGRAL EQUATIONS FOR PLANE ORTHOTROPIC BODIES IN A DUAL FORMULATION
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Abstract: The paper presents a dual formulation for plane problems assuming an orthotropic body. In the dual formulation of plane problems stress functions of order one and the rotation field constitute the fundamental variables. The stresses and strains are regarded respectively as intermediate variables of the first and second kind. The field equations include those resulting in stresses in terms of stress functions, Hooke's law, the equations of compatibility and the rotational equilibrium equation. In order to formulate the equation of the direct method we have determined the fundamental solutions of order one and two, established the Somigliana identities and the Somigliana formulae, presented a numerical algorithm and solutions to some test problems.
Keywords: Dual formulation, plane problems, orthotropic body, boundary element method, Somigliana relations, equation of the direct method 

1. INTRODUCTION
In spite of the great number of publications devoted to plane problems in the primal system of elasticity - without completeness we cite some classical works [4], [1] and [2] - there are only a few dealing with plane problems in the dual system elasticity, i.e., regarding the real stress functions of order one as fundamental variables.

If we use stress function of order one calculation of stresses requires the determination of the first derivatives - in contrast to stress functions of order two from which stresses can be obtained in terms of the second derivatives - and this property makes them attractive in boundary element applications though a further equation is needed (that of the rotational equilibrium) to ensure that the stresses be symmetric.

Assuming homogenous and isotropic materials Szeidl [5, 6] investigated the plane problem in the dual system of elasticity. If the material is orthotropic and homogenous one can repeat the line of thought presented in the papers  [5, 6] and thesis [7].

Our aim is to find the fundamental solutions and the Somigliana relations in the dual system of plane elasticity for an orthotropic body provided that the stress functions of order one and the rotation are the fundamental variables. We shall also present an algorithm for the numerical solutions and a numerical example.

2. GOVERNING EQUATIONS 
Throughout this paper  x1 = x  and  x2 = y  are rectangular Cartesian coordinates, referred to an origin O. {Greek}[Latin subscripts] are assumed to have the range {(1,2)}[(1,2,3)]. The inner and outer regions denoted by  Ai  and  Ae  are shown in Figure 1. They are bounded by the contour


L00000000000 = Lt1 ( Lu2 ( Lt3 ( Lu4.   
      


      
          
We stipulate that the contour has a continuously turning unit tangent ((  and admits a nonsingular parameterization in terms of its arc length  s . The outer normal is denoted by  n( . In accordance with the notations introduced  (( stands for the derivatives with respect to  x( .

Assuming plane strain let u( , e(( and t(( be the displacement field and the in plane components of stress and strain, respectively. The stress functions of order one are denoted by F( . 
We shall assume that there are no body forces.
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Figure 1.
For homogenous and orthotropic material the plane problem of classical  elasticity in the dual system is governed by    

1. the kinematic equations:

     t11 = F1(2,
t12 = F2(2,  


         (1a)

     t21 = -F1(1,
t22 = -F2(1; 


         (1b)

2. the inverse form of Hook’s law: 

     e11 = u1(1 = s11t11 + s12t22,


                        (2a)


     e22 = u2(2 = s21t11 + s22t22,


                        (2b)


     e12 = (u1(2+ u2(1)/2 = (t12 + t21)s66/4;

         (2c)

     (here s11, … , s66 stand for the constants of  elasticity).

3. the compatibility conditions:


     e11(2 - e12(1 + (3(1 = 0, 



          

     e21(2 – e22(1 + (3(2 = 0, 



           (3)


     in which (3 is the rigid body rotation,

4. and the symmetry condition

     t12 = t21. 





           (4) 

If equation (4) is fulfilled then either equation (1a)2 or equation (1b)1 can be omitted. In this way we have nine equations for the nine unknowns F1, F2, t11,  t12 =  t21,  t22, e11, e12= e21, e22 and (3.
Equations (1a,b), (2a,b), (3) and (4) should be associated with appropriate boundary conditions. If the contour is not divided into parts then either tractions or displacements are imposed on it. In the opposite case the contour is assumed to consist of arcs of even number on which displacements and tractions are imposed alternately. In the present case {tractions}[displacements] are given on the arc {Lt = Lt1 ( Lt3 }[Lu=Lu2 ( Lu4]. We remark that the variables with hats stand for the values prescribed.

Correspondingly the dual field equations are associated with the strain boundary conditions 
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and a set of boundary conditions imposed on the stress functions
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Here C( are undetermined constants of integration. The supplementary conditions of single valuedness have the form
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Observe that we have as many undetermined constants of integration as there are supplementary conditions.
3. BASIC EQUTION AND FUNDAMENTAL SOLUTIONS

Eliminating the intermediate variables e(( and t(( we obtain the fundamental equation in the form
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where Dik is a differential operator and  uk  is the vector of fundamental variables (u( is refereed to as dual displacement): 
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Let Q((1, (2) and M(x1, x2) be two points in the plane: the source point and the field point. We shall assume temporarily that the point Q is fixed. The distance between Q and M is R , the position vector of M relative to Q is r(. The solution to the differential equation 
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in which ((M-Q) stands for the Dirac function, e( is a prescribed incompatibility at Q point and e3 is a couple normal to the plane at point Q. It can be shown (we have omitted the long hand made calculations) that 
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where Ukl(M,Q)  is the fundamental solution of the first kind:
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in which
	
[image: image10.emf]K





1

Im



i



1

2

I

i

, I

i



4



d

i

b

i



1

b

i

3

s

11



b

i

2

s

21



s

66

b

i

s

12

s

22

 i



1,2,



k



x

1





1





k

x

2





2

, d

1





1





1





1

2

1



2



2

2

1





2





2

2

, d

2





1



1



1

2

1





1





1

2

1





2





2

2

,



1,2

2





2s

21



s

66

2s

11



2s

21



s

66

2s

11

2



s

22

s

11

,







a





ib



,









a



ib



, b





0.


	


It is obvious that the fundamental solution of order one fulfils the usual symmetry conditions 
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4. FUNDAMENTAL SOLUTION OF ORDER TWO
Determination of the fundamental solution of order two is based on the strain boundary conditions. Let 
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where t( is referred to as dual stress vector. It can be proved by hand made calculations that the dual stress vector from the fundamental solution 
[image: image13.wmf]å

=

3

1

p

pq

p

M)

(Q,

(Q)U

e

 is of the form 
	
[image: image14.emf]t



M

o







l



1

3

e

l

Q

T

l



M

o

,Q,  #   


	(14)


where Tlk(M0, Q) is referred to as fundamental solution of order two: 
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Here n( is the outward unit normal to L at the point M0. We remark that the fundamental solution of order two fulfils the following equation: 
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5. DUAL SOMIGLIANA FORMULAE FOR INNER AND OUTER REGIONS
The results in this section are presented without a proof. First we shall consider an inner region. It can be proved that 
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Equation (17) is the first dual Somigliana formula. It can also be proved that
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where c(((Q0) = ((( /2, if the contour is smooth at Q0. Otherwise it depends on the angle formed by the tangents to L at Q0. Equation  is the second dual Somigliana formula or which is the same the integral equation of the direct method.

If the region under consideration is an outer one we shall assume that the stresses t11((), t12 = t21(((), t22(() are constant and the rotation (3(() is zero at infinity. It is obvious that the stresses at infinity follow from the stress functions functions: 
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With regard to the notational conventions introduced it is clear that 
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It can be proved that the equation 
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is the first dual Somigliana formula for outer regions. 

It can also be proved that the second dual Somigliana formula for outer regions assumes the form
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6. EXAMPLES

In this section we shall present numerical solutions for two problems. The material is birch for which s11 = 8.497x10-5, s12 = s21 = -6.11x10-6, s22 = 1.6999x10-4 and s66 = 1.456x10-3 [mm2/N]. The first problem is an infinite plane with a circular hole (Figure 2b), the second is the same plane with a circular rigid inclusion (Figure 2c).

For completeness Figure 2a. shows the region to use if we solve the integral equation of the direct method in its traditional form, i.e., if the exterior region is replaced by a bounded one.
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Figure 2.

Lekhtniski's book [3] contains closed form solutions for the stresses on the boundary, as well as numerical values which can be found in Table 17. on page 197. Table 1. and Table 2. in this paper show the results obtained by solving integral equation  (these are typeset in red) and the results taken from [3]. We have used a polar coordinate system, and the tables contain the quotients ((/p for the plane with circular hole and (r/p, (r(/p, ((/p for the plane with the circular inclusion.

Table 1: Results for the circular hole

	Polar angle
	Circular hole

	
	
[image: image33.emf]



/p

 
	 [5], p.197 

	0
	-0.70744
	-0.707

	15°
	-0.33928
	-0.340

	30°
	0.06951
	0.069

	45°
	0.40451
	0.404

	60°
	0.96605
	0.966

	75°
	2.57736
	2.577

	90°
	5.45409
	5.453


Table 2: Results for the rigid inclusion

	Polar angle
	Rigid kernel

	
	 
[image: image34.emf]

r
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	[5], p.197 
	 
[image: image35.emf]

r



/p


	[5], p.197 
	
[image: image36.emf]



/p

 
	[5], p.197 

	0
	1.2363
	1.237
	0.0000
	0.000
	0.0444
	0.044

	15°
	1.1558
	1.156
	-0.2999
	-0.299
	0.0936
	0.093

	30°
	0.9364
	0.937
	-0.5188
	-0.519
	0.2701
	0.270

	45°
	0.6370
	0.698
	-0.5986
	-0.599
	0.5158
	0.516

	60°
	0.3377
	0.388
	-0.5181
	-0.599
	0.6990
	0.699

	76°
	0.1188
	0.119
	-0.2987
	-0.299
	0.5627
	0.564

	90°
	0.0389
	0.039
	0.0000
	0.000
	0.0028
	0.003


7. CONCLUDING REMARKS
We have presented the equations of plane elasticity in terms of stress functions of order one for an orthotropic body and the rotation. The fundamental solutions of order one and two for the stress functions of order one and the rotation have also been determined. Assuming simply connected regions and omitting the hard and long hand made calculations we have established the dual Somigliana relations for inner and outer regions. Numerical solutions for two simple problems have also been computed and are presented here.
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