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1. INTRODUCTION TO Satellite Navigation 

The concept of using satellites for navigation dates back to Sputnik 1 in 1958 when engineers monitoring this first orbiting body observed that the substantial Doppler frequency shift of the received telemetry signal could be used to determine accurately the satellite’s position and orbit. It was quickly shown that the inverse situation was also possible; that if the satellite position (orbit) were known accurately, an observer’s location on the earth could be determined. After several years of work at the Applied Physics Laboratory (APL) of Johns Hopkins University, a prototype satellite was developed and launched, and satellite navigation was born.
The first operational systems were part of the Navy Navigation Satellite System known as “Transit.” The system uses the Doppler positioning method and requires information gathered from only a single satellite, over the time of passage overhead, to produce a fix.
The newest generations of navigation satellites are part of the Global Positioning Satellite (GPS) system. This system uses a pulse ranging method of positioning and requires four satellites to be in view of the receiver simultaneously for a complete solution. Though the requirements are more stringent, GPS provides real-time, three-dimensional position, track, and speed with accuracies many times better than the earlier Transit system. 

2. POSITION DETERMINATION USING DOPPLER TECHNIQUES 

The original method of determining position from satellite signals is through observation of the Doppler shift in frequency of a known signal as the satellite passes over the observation area. The shift in frequency is a unique function of the motion of the satellite relative to the observer’s position. To compute an observer’s location accurately, the position and orbit of the satellite and the frequency of the transmitted signal must be known. Also, timing between the transmitting satellite and the observer’s receiver is important. Most of these requirements are provided by a message contained in a separate signal transmitted by the satellite (the navigation message), which reports the satellite ephemeris (position and orbit information) and a timing signal. The frequency of transmission is known by all users and must be provided by a very stable source aboard the satellite. The next section show how this information is combined to allow an observer to compute a position on the earth. 

2.1. Doppler Ranging 

The frequency received from the satellite (fR) consists of the transmitted frequency (fT) plus a Doppler frequency (±fD) due to the relative motion between the satellite and receiver. The receiver also has a stable oscillator which produces a reference signal at approximately the same frequency as transmitted by the satellite (fG). Subtracting this frequency from the received frequency, the receiver determines the shift in frequency in terms of a Doppler count. The Doppler count represents a counting of the number of frequency cycles occurring between timing signals transmitted by the satellite.
The equation form: 
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(1)
Where t1 + R1/c represents the time the signal was received after it was transmitted from the satellite at time t1 and traveled to the receiver over a slant range of R1 at the speed of light c.
Expanding equation into two parts: 
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(2)
The first part is simply the integral of a constant since the receiver produces a stable frequency (fG), but the second part contains the changing received frequency fR. 

However, the second integral also represents the number of cycles received between the two timing signals (sent by the satellite) which must be equal to the number of cycles sent by the satellite between those same two times. This allows rewriting the second part in terms of simply the transmitted frequency and the transmitter timing signals:
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(3)
Because fT is also considered constant and known, both the above integrals can be performed resulting in:
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(4)
By combining terms, the equation can be rewritten as:
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The first term of the equation is just the difference between the receiver’s oscillator frequency and the satellite’s transmitted frequency, which is a constant term and can simply be ignored. The second term is a measure of the change in range between the satellite and the receiver during the time between two timing marks. This information is used to determine the receiver’s position. This range difference is given in terms of wavelengths of the receiver’s generated frequency (fG). 

2.2. Computation of Position 

Computation of position usually requires a small digital computer. The computer determines the satellite position at each timing signal from the ephemeris information transmitted by the satellite. The computer also uses an approximate position of the receiver, either inputted by the user or estimated from the last fix. The expected change in slant range between the satellite and the receiver (based on the estimated position) is computed and compared to that actually measured. The estimated position is then shifted in such a way that the differences are decreased. Through several iterations of this procedure, the estimated position is refined until the differences are reduced to an acceptable value. 

As mentioned earlier, the Transit system requires only a single satellite to be in view to determine position. The iterative process is repeated for as long as the satellite is in view resulting in an increasing positioning accuracy with time, as illustrated in the next figure. 
[image: image8.emf]
Figure 1: Doppler positioning. Successive position iterations may be achieved from a single pass of a single Transit satellite
If the receiver is in motion, the computer must know the motion accurately to compute the Doppler-based slant range change precisely and to know the change in receiver position over the observation time. Multiple fixes can be combined to provide position, track, and speed for subsequent iterations resulting in increased accuracy. If a single satellite is used, a dead reckoning (DR) plot is used between times the satellite is below the horizon to give an estimated position, track, and speed for the next satellite encounter.
2.3. Errors and Accuracies 

The theoretical accuracy of the Doppler ranging method is associated with the wavelength of the frequency used for the navigation signal. For instance, a 400 MHz signal (currently used by Transit) corresponds to a 0.75 meter wavelength and a similar theoretical accuracy (for a single fix). Unfortunately, many sources of errors exist which affect the accuracy of satellite navigation systems. 

a) Refraction Errors.
There are two sources of refraction errors as the satellite signal propagates between the satellite and the receiver. The first is introduced by the ionosphere which changes the path of propagation of the signal. This change introduces a shift in the frequency of the signal which would affect the determination of the slant range change between the satellite and receiver. In order to compensate for this shift, navigation satellites transmit over two different frequencies and compare the Doppler measurements made at each to reduce the error introduced by the ionosphere.
The second source of refraction error is the troposphere which affects the speed of propagation of the signal as it travels through the atmosphere. This error changes with atmospheric changes, such as temperature and humidity, and with elevation angle between the receiver and the satellite (signals travel through more of the atmosphere, and are affected more, with lower elevation angles). The troposphere affects all frequencies similarly and is not as easily subtracted as the ionospheric effects. Receiver station compensation for tropospheric errors, if any, is usually done using simple atmospheric models.
b) Position Errors.
The accuracy of the fix obtained from Doppler positioning, with respect to ground latitude and longitude, is a function of the receiver’s position with respect to the satellite orbital plane and knowledge of the receiver’s altitude above the reference “spheroid” (the surface defined as if the earth were actually a perfect sphere) on which satellite position is based. (Note: The “geoid” is another common reference surface and represents the surface defined by mean sea level worldwide. Both the spheroid and the geoid are different from the actual topography of the earth. Knowing one’s altitude, in this sense, is not as simple as it may seem). Next figure shows how the same range rate information would report a different position if the altitude were not accurately known. Notice that, for the same error in altitude, the error in computed position is greater if the receiver is closer to the satellite orbital plane.
[image: image9.emf]
Figure 2: Altitude error. Computed position may have an error associated with uncertainty of "altitude" with respect to the reference plane
Additionally, as was mentioned earlier, receiver position, track, and speed are required for accurate positioning. Estimated position is not as important as track and speed, as this error will be eliminated through the iteration procedure of the computer’s correlation with slant range rates. However, track and speed are very important as they affect the computation of the Doppler shift between satellite and receiver.
c) Satellite Errors.
Errors attributable to the satellite include rounding in the ephemeris data transmitted by the satellite to the receiver, and inaccuracies of this reported information due to orbital parameters such as atmospheric or solar pressure drag and inaccuracies of prediction of the satellite orbit over time due to insufficient knowledge or modeling of the geo-potential (gravitational) model of the earth. Satellite ephemeris is computed frequently by ground stations and the navigation message updated often to reduce these errors. Additionally, satellite and receiver clock and oscillator instabilities may introduce another, not insignificant error.
3. PULSE RANGING AND PHASE DIFFERENCE POSITIONING 

Experience with the first Doppler-based satellite navigation systems produced newer ideas for conducting positioning from orbiting satellites, which offered increased accuracies and eliminated some of the sources of errors affecting the earlier method. Doppler methods compare estimated range rates with those derived from the Doppler shift to determine a position correction. A simpler concept involves deriving one's actual range directly from the satellite transmitted signal. The idea is presented in the next figure. 

[image: image10.emf]
Figure 3: Pulse ranging. Distance (slant range) between a transmitter and receiver can be determined by knowing the time it takes a signal to travel
If a signal (a pulse, for instance, as shown in the figure) were sent out by a satellite at a known time, the exact range from the satellite to the receiver could be found from:
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(5)
where cm is the speed of propagation of the signal and t is the time between transmission (temit)and reception (trecv) of the signal. The range represents a sphere, somewhere on which the observer would lie. An exact position, in three dimensions, could be obtained by the intersection of three of these range spheres (once again, knowing precisely the position of the transmitter[s]). 

The concept is quite simple, but actual implementation of the idea poses some real problems. For example, the signal sent by the satellite, from which the observer will compute range, must allow the receiver to determine exactly when a particular event was transmitted.
3.1. Ranging Signal

Specifying the particular “event” to be used to compute range lends itself very well to digital techniques. To determine exactly which “event” has been received (assuming the satellite transmits continuously), a digital code with a unique pattern could be used. The receiver picks up the signal and compares it to the same code stored in memory to find where along the pattern the received information is located. 

A convenient method for impressing the digital code onto a suitable carrier wave is through biphasic modulation. The “event” is a change (or no change) of the phase of the carrier wave by 180o each time the mate of the digital code changes. An example of a biphasic modulated signal is shown in next figure:
[image: image12.emf]
Figure 4: Biphasic modulated signal. An "un-repeating" code is modulated onto a carrier frequency to determine the timing "mark" for pulse ranging
The transmission rate of the digital sequence determines two important characteristics of the system. A small time between phase changes (tb) allows the receiver to more accurately determine range from the transmitter, but a larger pulse period ensures better detection of the pulse and error-free use of the information. Tradeoffs between these objectives results in the modulation frequency used (which affects the receiver minimum signal-to-noise ratio) and also determines the theoretical accuracy of the system. 

3.2. Timing Signal 

Another difficulty posed by the ranging concept is determining exactly when the particular “event” was sent. Solving this problem involves two steps: correlation and synchronization. 

a) Correlation.
The next figure displays the three signals involved in pulse ranging. The first signal is the biphasic modulated signal transmitted by the satellite (S0(t)). Below it is the identical signal stored in memory of the receiver (S1(t)). Note that this stored signal may not be exactly synchronized in time with the transmitted signal. The third signal shown (S2(t)) is the received signal (ignoring such distractions as noise). 

[image: image13.emf]
Figure 5: Pulse ranging signals. The relationship between these signals is used to determine the times required for an accurate ranging
Both the replica signal and the received signal are digitally sampled and then the signals are compared using a digital cross correlation function of the form of:
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(6)
(Note: Summation in discrete-time [digital] mathematics is the same as integration in conventional math.) Summation over many values of t results in a particular time (to) for which the summation is maximum. This represents the offset time, or time between the occurrence of the same particular event (bit / phase change) in the received signal and the stored replica code. 

b) Synchronization.
The offset time found above does not yet represent the true t between transmission and reception of the signal, as the satellite and receiver clocks may not be in perfect synchronization. This clock offset time is shown in above figure as the tc time difference between the satellite signal and the receiver’s replica code. If it is assumed that the satellite is the absolute time reference, then this clock offset time would produce an error in range if not allowed for. The method for determining the value of the clock offset time is described as part of the ranging process described next. 

3.3. Range Determination
The range equation would now look like: 
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(7)
In terms of an X, Y, Z coordinate system, this equation would be of the form: 
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(8)
where the X1(t1), Y1(t1), Z1(t1) terms represent the position of the transmitter (satellite) at the time of transmission (t1). X, Y, and Z represent the position of the receiver computed from the range information derived from the correlation offset time cm to, and cm tc represents the range error due to the satellite receiver clock offset time.
Assuming that the position of the satellite is known precisely at all times (via a navigation message as described earlier), this equation has four unknowns involving the X,Y, Z position coordinates of the receiver and the receiver clock offset time tc. To solve for these unknowns, at least four range signals must be available at the same time to solve four similar equations simultaneously:
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(9)
Note that the same receiver clock offset time tc appears for each of the received signals. This assumes that each of the received signals comes from satellite transmitters synchronized exactly with absolute time. If this were the case, then even if the above ranges were computed from four different satellites, when the information was received all the times would be the same, i.e., t1 = t2 = t3= t4. In practice, another time correction (included in the navigation message) is incorporated to synchronize the transmitters on board the different satellites themselves to an absolute reference time. 

3.4. Errors and Accuracies 

The refraction-type errors described earlier affect all types of transmissions through the atmosphere and decrease the accuracy of the ranging process as well. As with Transit, GPS satellites transmit on two different frequencies to compensate for ionospheric effects on the signals. These much higher frequencies (1.58 and 1.23GHz) are also less affected by the troposphere and additionally allow a much higher bit rate resulting in greater accuracies. 

No estimated position or track and speed information is required because solution of the four range equations simultaneously gives a very accurate three-dimensional fix. Satellite errors can be minimized with more accurate and stable oscillators, better geopotential models and more stable orbits and updating of the navigation message more frequently.
The next table compares accuracies of some of the more common navigation systems. 

Table 1
	System
	Position accuracy [m]
	Comments

	TACAN
	400
	Line of sight air navigation

	Omega
	2200
	Worldwide radio navigation

	Loran-C
	180
	US shore radio navigation

	Transit
	200
	Worldwide, 100 min. between satellite passes

	GPS
	15
	Global, 24 hours, all weather availability
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