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Abstract
The work presents experimental data of wave velocity measurements in wood samples, obtained by using intrinsic
transfer method. The method is based on the properties of the behavior of the eigenvalues of the transfer matrix in
resonance cases, this means the method is a particular modal approach of a resonance method. To find the wave
velocity in a sample, respective sample is built-in an embedded system containing gauge material and the sample under
tests. A numerical analysis applied on the analithycal expression of the eigenvalue permits the wave velocity
estimation.
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1.INTRODUCTION

If we consider a simple solid homogeneous elastic rod with the length l , much larger than its diameter, and

characteristic impedance cZ  , placed between two semiinfinite media with characteristic impedances inZ and

outZ , which propagates a longitudinal   plan wave, TM which connects the amplitudes of the Fourier components

of the incident and reflected displacements in the sample )(A and )(B has the expression:
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with  attenuation factor related to amplitude,  angular frequency and c the speed of the wave. In the stationary

case, when the stationary wave is confined inside the sample, only the intrinsic part of the TM is involved, i.e.
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Intrinsic part of the TM has the eigenvalues:
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The eigenmodes of the rod, which correspond to the real values of the eigenvalues, are given by: ,0
c
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2. TRANSFER MATRIX IN THE CASE OF A TERNARY SYSTEM

Consider a ternary system which contain three layers having the thicknesses 321 l,l,l and characteristic impedances

321 Z,Z,Z which propagates longitudinally waves with wavenumbers 321 k,k,k , placed between two semiinfine

elastic media, with characteristic impedances inZ and outZ . The spectral amplitudes of the waves at input and

output connected by a TM are given below[1][2]:
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The intrinsic part of the TM, taking into consideration attenuation is:
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The eigenvalues of )(TM with identical materials of the layers 1 and 3 are:
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where:
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A modal analysis combined with a numerical method able to study the behavior of the eigenvalues can be proposed

to find elastic constants of the solid materials. Such a method can be applied to study simple embedded systems

containig gauge materials and the sample under test. Such simple systems are characterized in the case of a

longitudinal plan wave propagation by a simple distribution of the eigenmodes and also by a simple and convenient

analytical expression TM. Examples of such simple systems are binary or ternary built-in systems, which contain

gauge materials and materials for investigation[3].

3. APPLICATION OF THE METHOD FOR SOME SPECIAL MATERIALS
A good application of the method is to characterize the elastic properties of the wood samples[4] Because

the elastic and mechanical properties of wood (elastic module, mass density, and Poisson's ratios) are random

variables that vary significantly for the same wood species [5], the intrinsic transfer method offers a fast and

convenient method to characterize such materials. Instead of huge poles with the ends connected to emitters and

receivers [6], the samples used in the transfer matrix method are much smaller. The wood samples consisting of

small cylinders were built-in ternary systems brass-wood-brass, taking the brass as gauge material. Moreover, the

small cylinders can be cut so as to comply the cylindrical geometry used in characterization of the orthotropic

behavior of wood. Tables 1 and 2 express the configuration of the experimental setup, samples sizes and the
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obtained values of sound velocity along the fiber lc and perpendicular to it rc .  represents the value of the

frequency of the eigenmode taken into consideration for numerical analysis.

Table 1. Elastic wave velocity along the fiber estimated by intrinsic transfer method
No. Species of

wood 2l
(mm)

Diameter
(mm)


(Kg/m3)

1l
(brass)
(mm)

3l
(brass)
(mm)


(Hz) lc

along
(m/s)

1 Fir tree 29.19 10 473.14 160.2 93.57 3300.78 4563
2 Oak 29.98 9.95 724.85 199 129.16 3164 4161
3 Beech 29.90 9.98 703.77 123.4 123.4 4355 4905
4 Spruce 29.45 9.47 450.73 160 93.39 3808 5437
5 Ash 29.5 9.52 801.11 198.4 129.15 3398.44 4253

Table 2. Elastic wave velocity transversal to the fiber estimated by intrinsic transfer method
No Species

of wood 2l
(mm)

Diameter
(mm)


(Kg/m3)

1l
(mm)

3l
(mm)

 (Hz) rc
Radial
(m/s}

1 Fir tree 31.37 10.02 473.14 160.2 93.57 1269 1512
2 Oak 31.07 10.0 724.85 199 129.16 1562.5 1707
3 Beech 31.15 10.1 703.77 123.4 123.4 1738.28 1692
4 Spruce 16.03 9.8 450.73 159.64 92.72 1171.88 1019
5 Ash 22.14 9.93 801.11 198.07 129.42 1972.66 1850

4. CONCLUSIONS
The work proposes a resonance method based on the properties of the eigenvalues of the wave transfer matrix

combined with a numerical method, in order to find the velocity of elastic waves in solid elastic samples. The study

also considers  the attenuation and shows that attenuation affects the frequency of eigenmodes for an embedded

system. The ternary system is preferred because a such system preserves much better the longitudinally plan wave,

special case for which the transfer matrix has a simple mathematical form. Although the theory is valid for plane

longitudinal waves, we consider that the experimental model consisting of three solid rods  connected in line by

adhesion, with extreme rods made from identical materials and the sample of interest placed between these gauge

materials, approaches quite well the theoretical assumption. All experiments were done using noncontact methods

based on Doppler interferomety

REFERENCES
[1] Song, B. H., Bolton, J. S., A transfer matrix approach for estimation the characteristic impedance and wave

number of limp and rigid porous materials, Journal of the Acoustical Society of America, Volume 107, Issues 3,

Pages 1131-1152, 2000

[2] Nayfeh, A. H., The general problem of elastic wave propagation in multilayered anisotropic media, Journal of

the Acostical Society of America, Volume 89, Issue4, pages 1521-1531,1997

[3] Cretu, N., Nita, G., A simplified modal analysis based on the propeties of the transfer matrix, Mechanics of

Materials, Volume 60, pages 121-128, 2013



236

[4]Green, D.W., Winandy, J.E., Kretschmann, D.E. Mechanical properties of wood Wood Handbook. Wood As An

Engineering Material. General Technical Report FPL GTR 113, pp. 1-45, 1999.

[5] Tallavo, F., Cascante, G., Pandey, M. D., Estimation of the Probability Distribution of Wave Velocity in Wood

Poles, Journal of Materials in Civil Engineering, Volume 23,  Issue 9, Pages 1272-1280, 2011

[6] Bucur , V., Feeney, F., Attenuation of ultrasound in solid wood, Ultrasonics, Volume 30, Issue 2, Pages 76-

81,1992


