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Abstract:  The Gauss principle of least constrains is derived from a new point of view.  We present a rederivation of the Gauss principle and then an extension of his principle to cases in which the standard principle of virtual work is not applicable. 
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1. INTRODUCTION
The motion of complex mechanical systems is often mathematically modeled by what we call their equations of motion. Several formalisms Lagrange’s equations [9], Gibbs–Appell equations [6], [1], generalized inverse equations Udwadia and Kalaba [12], [14] have been developed for obtaining the equations of motion for such structural and mechanical systems. Though these formalisms do not all afford the same ease of use in any given practical situation, they are equivalent to one another. 

They all rely on D’Alembert’s principle which states that, at each instant of time during the motion of the mechanical system, the sum total of the work done by the forces of constraint under virtual displacements is zero. Such forces of constraint are often referred to as being ideal. D’Alembert’s principle is equivalent to a principle that was first stated by Gauss [5] and is referred to nowadays as Gauss’s principle of least constraint. In fact, like D’Alembert’s principle, Gauss’s principle can be thought of as a starting point from which the machinery of analytical dynamics can be developed [14]. For example, it has been used in Udwadia and Kalaba [12] and Kalaba and Udwadia [8], in conjunction with the concept of the Moore-Penrose inverse of a matrix, to obtain a simple and general set of equations for holonomically and nonholonomically constrained mechanical systems when the forces of constraint are ideal. Though these two fundamental principles of mechanics are often useful to adequately model mechanical system there are, however, numerous situations where they are not applicable since the constraint forces actually do do work under virtual displacements. For general systems with nonholonomic constraints, the inclusion into the framework of Lagrangian dynamics of constraint forces that do work has remained to date an open problem in analytical dynamics, because neither D’Alembert’s principle nor Gauss’s principle is then applicable.
2. GAUSS PRINCIPLE OF LEAST CONSTRAINT
In his epochal paper of 1829, Gauss [5] began by remarking that the D’Alembert principle reduced all of dynamics to statics and that the principle of virtual works reduced all of statics to a mathematical problem. Thus, there could be no new principle of mechanics that is not included already in those two. Yet, he observed that every new principle is not without merit, especially if it can shed new light on mechanical processes and perhaps render the solution of certain problems simpler to obtain. 
Gauss’ Principle  is discussed in only a few (and mostly not so recent) dynamics articles or textbooks. Section 2.1 explains Gauss’ Principle for the motion of a constrained point mass; Section 2.2 extends the discussion to a constrained rigid body. The constraints can be physical (imposed by nature, such as contacts or mechanical joint constraints) or artificial (i.e., abstract criterions specified by the user).

2.1. Gauss’ Principle for a point mass
Together with its “cousins” d’ Alembert’s and Jourdain’s Principles, Gauss’ Principle is a basic axiom of physics, at the same level as Newton’s laws of motion: the latter describe how masses move under the influence of forces, the Principles describe how to take geometric motion constraints into account. The Principles themselves cannot be derived from Newton’s law, however. The following paragraphs state Gauss’ Principle in both its “orthogonality” and minimization forms.
2.1.1 Orthogonality form 
The ideal constraint forces do no “work” against the allowed accelerations: 
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 is the acceleration that the point mass mi will execute under the constraints when driven by a force fi.
2.1.2 Minimization form 
The acceleration 
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 minimize the following “energy”:
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Figure 1: depicts the situation for one single point mass.               Figure 2: Constrained rigid body. 

The concepts “work” and “energy” do not have their classical meaning, since there is an extra time derivative involved

2.2. Gauss’ Principle for a rigid body
Gauss’ Principle for a constrained rigid body (Fig. 2) follows straightforwardly from Gauss’ Principle for a set of point masses.
2.2.1. Orthogonality form
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 is the angular velocity of the rigid body, and 
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 is the total time derivative of the angular momentum. 
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 is any acceleration of the rigid body that is compatible with the constraints, i.e., the acceleration of each point of the moving rigid body that is in contact with the environment maintains the contact.
2.2. 2. Minimization form 
It is well known that a 6 x 6 so-called generalized mass matrix or operational space inertia matrix) M represents the linear and angular components of the rigid body’s inertia. This generalized mass matrix allows to write the “acceleration energy” to be minimized in Gauss’ Principle as
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 is the six-dimensional vector containing the concatenation of the three-dimensional force F and moment M used in Eq. (3). 
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 is any constraint-compatible, six-dimensional acceleration vector 
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of the rigid body. The minimization of the “energy” in Eq. (4) takes place over all possible accelerations 
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while the current positions and velocities are given. The motion constraints give rise to a linear constraint on the accelerations, and the following minimization procedure results:
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         subject to 
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2.3. Gauss’ principle of least contraints 
“The objects’ constrained accelerations are the closest possible accelerations to their unconstrained ones”

Formally, the accelerations minimize the distance 
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over the set of possible accelerations.
The matrix A and the vector b are determined by the geometry of the constraint. The solution to such a constrained minimization problem is well known, [3], [7] and uses the so-called weighted generalized inverse:
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Gauss’ Principle can be proven to be equivalent to d’ Alembert’s Principle for holonomic (“driftless”) constraints; for non-holonomic constraints, d’ Alembert’s Principle gives incorrect results, while Gauss’ Principle remains physically meaningful.

3. FROM GAUSS PRINCIPLE OF LEAST CONSTRAINT TO UDWADIA-KALABA FORMULATION (UKF)

In the papers Udwadia-Kalaba [12], the acceleration form of constraint equations is utilized. The derivation of the Udwadia–Kalaba equations [13], [15] utilizes the acceleration form of the constraint equations, together with the generalized Moore–Penrose inverse of a scaled constraint matrix. Further work in adopting the acceleration form of constraint equations may be found in [4], [7], for example. When the mathematical conformity of the acceleration form of constraints was taken advantage of with the dynamics of the system, explicit expressions for constraint forces were derived without any need to appeal to the free-body approach. This is particularly important in Lagrange’s mechanics formulations when the active forces are dependent on the constraint forces, as it is in the case of friction forces.
Consider first a discrete dynamical system of n particles. The configuration of the system is described by the n generalized coordinates 
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 its equations of motion can be described, using Newtonian or LaGrange mechanics, by the relations


[image: image22.wmf])

t

,

q

,

q

(

Q

q

)

t

,

q

(

M

&

&

&

=


(8)
Where the 
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 M is symmetric and positive definite. The accelerations of the unconstrained system 
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The derivation of the Udwadia–Kalaba equations utilizes the acceleration form of the constraint equations
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The usual constraint equations utilized in the lagrangian mechanics, holonomic constraint 
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and nonholonomic constraints 
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 can be writhen, by differentiation, in the form (10). 

We note that the constraints may be also explicit functions of the time and that the nonholonomic constraints may be nonlinear in the velocity components.
The presence of the constraints (10) imposes additional constraint forces of constraint, so that the explicit equation of motion of the constrained system becomes
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where n -vector 
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 represents the generalized constraint forces. The additional term Qc on the right-hand side arises by virtue of the imposed constraints prescribed by equations (6).

From the paper of Udwadia and Kalaba [12] is has been known that the actual system acceleration vector is given by the explicit formula 
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where 
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The corresponding equation of motion is
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where the 
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From the equation (12) we can be that at each instant of time, the motion of constrained dynamical system evolves so that the deviation 
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 of constrained generalized accelerations, 
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, from the unconstrained acceleration, a,  at each instant is direct proportional to the error 
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. We shall refer to the matrix 
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 as the weighted Moore-Penrose generalized inverse of  the weighted constraint matrix A.
The equation of motion (13) yields from the unique solutions of the constrained minimization problem, Gauss principle, [ 12]
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where 
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is the Gaussian functions.

Now, we can derive the Gauss principle of last constraint from formula (12). In  what follows, it is convenient to use the ‘scaled’ acceleration [ 11]
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Then, Eq. (12) becomes 


[image: image45.wmf]e

B

a

q

s

s

+

=

-

&

&


(16)

But 
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Thus, we obtain
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Rewriting now the original variables, we see that the variational problems becomes (14).
4. EXTENDED GAUSS PRINCIPLE AND GENERAL EQUATIONS OF MOTIONS

4.1. General equation of motion
In this section the formulation of general equation of motions is deduced following the approach of  Udwadia - Kalaba [15], [16]. We wish to determine all the equations of motion that are compatible with the constrain 
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 with no physical assumptions being made at all. We rewrite the equation of constrain in the form 
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The theory of generalized inverses shows us that the general solution of this set of linear algebraic equations for 
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where a is the free motion acceleration vector and C is an arbitrary vector, both being of the dimension 
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Eq. (20) can be rewritten  as equation of motion
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(21).

Equation (21) is the most general possible equation of motion that is compatible with the constraint relation 
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, of course assuming that the matrix M is nonsingular.

Note that only two essential mathematical ideas have entered the analysis: the chain rule of differentiation and generalized inverses of  matrices. 
Modern computing environments, such MATLAB, can be used for calculating the generalized inverse of a matrix, so it makes the approach highly suitable for numerical study. 
The Udwadia-Kalaba formulation, (UKF), of the dynamic equation is discussed from the point of view of numerical efficiency in the papers [4].

4.2 Extended Gauss Principle

In this section we wish to obtain an extended Gauss principle that leads to equation of motion (21). 

Using the same notation as earlier, plus the additional notation
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we find that the Eq. (21) becomes
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Recalling  the problem (17), we find that  
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In terms of the original variables, this problems is
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Equations (24) constitute an extended Gauss principle of least constraint. This principle covers the cases of nonideal and of course nonholonmic constraints.
Since the Moore-Penrose inverse of a matrix,
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When B is a square matrix with full rank, then its pseudoinverse coincide with the inverse.

The Moore-Penrose pseudoinverse matrix is associated with the last squares solution of a linear system.

5. CONCLUSION
The entire analysis presented in this paper was started directly with the constraints on the in a mechanical system. In fact, the constraints that makes a set of point masses and rigid bodies into system. 
We present a rederivation of the Gauss principle and then an extension of his principle to cases in which the standard principle of virtual work is not applicable. For to do this we used the  Udwadia–Kalaba equation [12], [14] and the acceleration form of the constraint equations, together with the generalized Moore–Penrose inverse of a scaled constraint matrix. The paper consider the mechanical systems including constraints holonomic or nonholonomic and also ideal or nonideal. This widens the applicability of the magnificent of the Gauss Principle to human thought.
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